UCRL-ID-122526

A Proposed Acceptance Process for
Commercial Off-the-Shelf (COTS)
Softwar e in Reactor Applications

Prepared by
G. G. Preckshot
J. A. Scott

Prepared for
U.S. Nuclear Regulatory Commission

FESSP
Fission Energy and Systems Safety Program

Lawrence Livermore National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful ness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

This work was supported by the United States Nuclear Regulatory Commission under a Memorandum of
Understanding with the United States Department of Energy, and performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

A Proposed Acceptance Process for
Commercial Off-the-Shelf (COTYS)
Softwar e in Reactor Applications

Manuscript date: September 22, 1995

Prepared by
G. G. Preckshot
J. A. Scott

L awrence Livermore National L abor atory
7000 East Avenue
Livermore, CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

ABSTRACT

This paper proposes a process for acceptance of commercial off-the-shelf (COTS) software products for usein
reactor systems important to safety. Aninitial set of four criteria establishes COTS software product identification
and its saf ety category. Based on safety category, three sets of additional criteria, graded in rigor, are applied to
approve (or disapprove) the product. These criteriafall roughly into three areas: product assurance, verification of
safety function and safety impact, and examination of usage experience of the COTS product in circumstances
similar to the proposed application. A report addressing the testing of existing software isincluded as an appendix.

CONTENTS

ACKNOWIEAGMENT ...ttt bbbt bt b e b e b e se e b s e e b e s e e b e e e bt e b e st e b e st e b et eb et e b et ebe et Vii
EXECULIVE SUIMIMAIYviveieeieietetetee ettt st st s testestestestesae e esaeseeseeseeseeseeaeebeesesaeatebeseeseentessesenseneenseseesensensearentensesnnas iX
0O 11 oo [1 o o SO 1
oo o= TP PP TSSOSO 1

L2 PUIPOSE. ...ttt ettt h bt et bR ARt SRR RS e e e e e e R e R e R e R e R R R R Rt Rt Rt R e e e e e e nenns 1

TR I T T 1 ST 1

1.4 BBCKGIOUNG ..ottt ettt sttt eb et se bt e bt e st b et b et b e e e b e ee e b e seeb e 1o bt se e b eeeh e ebeneebeneeb et eb e e ebene et e seebe e 2
1.4.1 COTS Background and FEASIDITILYcccieiriiriiiiieeereeereee et 2

1.4.1.1 Commercial-Off-the-Shelf Software and its Acceptabilityccoocverrinniinnieeeee 2

1.4.0.2 FEASIDIITY ISSUBS.....cviietireeteieete ettt ettt b e bt et se b e b 3

1.4.1.3 Perspectives on Acceptability EValUBLIONScooiirieiirieeienere e 3

1.4.2 Background on the Proposed ACCEPtaNCE PrOCESS.........ccciuriieeeueeirese s sie st saesae e sa e e eneenens 5

I R O =SS o 1o TSP STSPRSPRSN 5

1.4.2.2 BasisTor the ACCEPLANCE Critelia....ccviiiiieierieiesiese ettt e e s ens 5

1.4.2.3 Acceptance Process, Criteria, and CONCIUSIONS........cccveereeeneresc s 6

A IS L=y O <o [0 =TSSR 7
2.1 [EC 1226 CalBUONES ... eevereetereeterietesieseseesessesestesessesssessesessssessesessesessasessasessessssensssensesessesessesessesessesessenessensssenes 7

2.2 COTSUSAYE CAEUONES ...veveieieiieieieeeeteeeieetestestestestestessestestesaesaesessesseseesessessestessessestestessensensensensessnsensensens 7

2.3 Specia Note on Compilers, Linkers, and Operating SYStEMSccvcveieieenienesese e s 7

3.0 Overview of StandardS REVIEWEooo ettt e et se e e et e e e e e e eneeneens 9
3.1 TEEE 730 (NOW 730.1) .. .cutiteiiteieeteietesestesestestetesaetesaesesaesesaesesaesestesessessstessssesessesensasensassesessesessesessessssensssensasens 9

3.2 |EEE 983 (P730.2, DIAf 5)...eiucuiiieriiieiiiieiiteisteestesestesee et saesssaesessesessasessassssassssessesessesessesessesessesessesessensssenes 9

IR I 1 i 2 S TP 9

3 1 0 TP 9

TSI 1S O 10003 SRS 9

IS AN N LS 7N I E 2 0 SRS 9

A AN I S 0SSR 10

IS O 0 RSP STSSTPN 10

IS O RSP SSTPN 10
3.10 IEC 880, First Supplement t0 IEC 880 (DIaft)cccuoererrrereererieierieiesieieseee st sre e ereseereseereseene e 10
0 I B B 1 ST 10
BL2 TEC 1226 ..ottt te ettt sttt st e s st e st st e st et et et e st et e saebese et e saetesaeR e R e Rt eReRe R ene e R et e R et ebeneeteneetenaerenaeneneas 11

4.0 PropoSed ACCEPLANCE PrOCESSccuiiviieieieeeeeeeeseeteste st ete s e stestestestesaessessessensesseseeseesessessessestesteseensentessensensenennsans 13
4.1 Commercia-Grade Dedication fOr Class-0f-SerVICe ..o 13

4.2 Preliminary Phase of the Proposed ACCEPLtANCE PrOCESS.........ccvieieiiirerieseeieeeeeeeetessese e ste e sses e ssesseseneens 14
4.2.1 Acceptance Criterion 1—Risk and HazardS ANAlYSES.......ccevveieieieeeeisese e se e e s sse e saenenens 14

4.2.2 Acceptance Criterion 2—Ildentification of Safety FUNCLIONS.........cccovciviiiecenie e 14

4.2.3 Acceptance Criterion 3—Configuration Managementccccceveeveeieeenieeesese e e saeseeseeeens 14

4.2.4 Acceptance Criterion 4—Determination of Safety Categorycccccvevveereeesevesesie e s 15

4.3 Detailed Acceptance Criteriafor CalEJOY A ... oiiieiiiiieiesesesie e et e et te e sre e saesaensesaesaeneesens 15
4.3.1 Acceptance Criterion AS5—ProduCt ASSUIANCE..........c.ceeueiereeieriereeseeesese e sesae e tesressessesaeseeseseenes 15

4.3.2 Acceptance Criterion A6—Product DOCUMENALiON..........ceiueiveruerieieieeee e 16

4.3.3 Acceptance Criterion A7—Product Safety REQUIFEMENES.......cc.cveieeeieire e e s 16

4.3.4 Acceptance Criterion AB—SyStEM SAfELYccceciieieiiieseree ettt st e e e e s 16

4.3.5 Acceptance Criterion A9—Interface REQUIFEMENES.........ccoevieieieeeecesese e sre e s sse e saenenens 17

4.3.6 Acceptance Criterion AL0—EXPErience Databasecccvvveverieriereeieese e s 17

4.3.7 Acceptance Criterion A11—Error Reporting REQUITEMENLccveveiriere et seeaesaeeenens 17

4.3.8 Acceptance Criterion A12—Additional V&YV REQUITEMENTc..cveiciiiiieceee e 17

4.4 Detailed Acceptance Criteriafor CaEJONY B ...t 17

4.4.1 Acceptance Criterion B5—ProdUCt ASSUIANCE...........curuieriiiriierieesieseere s es 17

4.4.2 Acceptance Criterion B6—Product DOCUMENTALIONcovireiiriiriniieerieeseeesee s 17

4.4.3 Acceptance Criterion B7—Product Safety ReQUITEMENESooeirieerrenieeneese e 17

4.4.4 Acceptance Criterion B8—SySteM SafEtYccccvvivrivierirerereeeeee e eesese st seeaesaeeenens 18

4.4.5 Acceptance Criterion BO—EXperience Datahase ..o 18

4.4.6 Acceptance Criterion B10—Error Reporting REQUITEMENEccoveerrerieieneesee e 18

4.5 Detailed Acceptance Criteriafor CaEOIY Coociiiirierieirieirieesieesie st es 18
4.5.1 Acceptance Criterion C5—ProdUCt ASSUMANCE...........curureriiiriieriieeeseere st ss e es 18

4.5.2 Acceptance Criterion C6—Product DOCUMENTALIONcouveriiiriiriririeierieeseee e 18

4.5.3 Acceptance Criterion C7—Product Safety REQUITEIMENESoocirirerirenieeneesee e 18

4.5.4 Acceptance Criterion C8—SyStemM SafELYccveiireririeine e 19

4.5.5 Acceptance Criterion CO—EXperience Datahase ..o 19

4.5.6 Acceptance Criterion C10—Error Reporting REQUITEMENEccoveirirerieienieesee e 19

5.0 CONCIUSIONSveueiteeereseetese et seese e st sr et s e b e s e st e bt s e st n e bt e e s e e e s e s R e e e R e e e R e e e R e e e R e e e e b e n e e bt n e e R e e ese e e e s e m e e b e e e s e s en s 21
L L= 1= 10 = 23
Appendix A—Preliminary LiSt Of FACIOIS.......c..oo ittt bbb e bbb e e e 25
Appendix B—Testing Existing Software for Safety-Related AppliCationS.........c.coov v 35

TABLES

LI o LR S = Y O 1= o] (=SOSR 8
Table 2. COTSUSAGE CAOUONESueiveieiieieeeeeiee ettt ste st ete s e ste st e testeseessesse e essesesseeseasestessestentestessensansessenseseeneensasens 8
Table 3. COTS Saf €ty Cat@QONY CHITEITAcoueeeeeereeeeterie ettt st ee e e e se s e saeebesbesaesbesbesbeseebeeesee e anseneaneanens 8
Table 4. Preliminary COTS ACCEPLANCE CrItEITA.cietrieirieiriereeie ettt s b e st st s b seebe e 13
Table 5. Category A COTS ACCEPLANCE ClItEITa.....ccueueeeeeietiseses s e se e e e s e e e s s resresresreste s teseensenseeeneeneas 15
Table 6. Category B COTS ACCEPLANCE CrITBITAeeeuereeieieetire ettt sae st b et be e e e e e e e e eneas 18
Table 7. Category C COTS ACCEPLANCE CritEITal......cuiueirieirieirtereeie sttt sttt st st s beseebe e 19
Table A-1. Faillure CoNSEOUENCE Criterial....ciiuiuiierieieieeeeeteeeseste e s e st s te e sae e e e e e e e eseesessesresbesresaestaeeseensensenseneesens 25
Table A-2. Plan EXISEENCE CrITEIIA.ccietirterierieie ettt sttt et se e e e e e e e eaeeaesaeebe et e sbeseesbabeseesaneeneeneaneas 25
LI o Lo e TS @ T G) =1 - LS 26
Table A-4. Software Configuration Management CritEriacccvveeieieveieiereeeeie et 27
Table A-5. SOfIWEIE VEV ClILEIIA. .. e e ieiieieiee ettt ettt be b bt bt s b e s be e et e bese e e e s e e e e e 28
Table A-6. Actionsto Take When DataiS MISSINGcccviiiiiiirnieniei ettt sb e s be st s seene e 29
Table A-7. Minimum SQA DOCUMENLALIONccueiueieieeeeeteetisesesteste e stes e ssessesseeeeeseesessessessessessessassessessessensensesens 29
Table A-8. Minimum Required SQA ReVIEWS aNd AUAITS........oiiiiririe e e 29
Table A-9. SQA, SCM, and V&V for Other SOftware SUPPIIEISccvieieererereeeeeeeee e 30
Table A-10. Suggested Additional DOCUMENTALIONc.cceeieiiiieeesesesese et ee e e e ere s e s e resre e srestesaeseensensenneneenens 30
Table A-11. Suggested Areas of StaNAardiZaLiONcoceiiiiiiiiiie e e 30
Table A-12. MiNIMUM V&YV TBSKSciiiiieiirieieriesieeeee et s sttt e e e e e e e s esessessesbesseseessesseseensensensenensens 31
Table A-13. Minimum Documentation Needed for aPOStEriori V&V ...t 32
Table A-14. Typical Policies and Directives of a Configuration Management Operationccoccveverereeneeieeceenenn 33

vi

ACKNOWLEDGMENT

The authors thank and acknowledge the efforts of Nuclear Regulatory Commission staff members, Leo Beltracchi,
Robert Brill, John Gallagher, Joe Joyce, Joel Kramer, and James Stewart, who reviewed this work and provided their
insights and comments.

Vii

EXECUTIVE SUMMARY

The approval process for commercial off-the-shelf (COTS) software to be used in reactor safety systems (Class 1E)
has been termed “ commercial dedication,” although this term also implies defect reporting responsibilities (for the
dedicator) under 10 CFR 21. Since this document addresses only the investigation of the acceptability of such
software for use in systems important to safety, the term “acceptance process’ is used. The purpose of thiswork isto
review current and draft standards to create a set of “acceptance criteria’ and incorporate them into a proposed
acceptance process. The resulting acceptance criteria are assessed with regard to NRC practices and regulatory
purview to arrive at an ordered set of criteriarelated to safety that comprises a proposed process for accepting COTS
software for use in reactor safety applications. Prior to discussing the acceptance process, summary information is
provided regarding the nature of the problem of acceptance and the feasibility of using COTS software in reactor
safety applications. The latter describes some cost-related considerations, other than purchase price, that are
associated with using COTS software in systems important to safety.

In keeping with NRC practices, wherein reactor equipment is regulated primarily in proportion to its importance to
reactor safety, it is proposed that COTS products should be reviewed with a stringency proportional to the safety
functions they are intended to provide. An initial set of four criteria, comprising the preliminary phase of the
acceptance process, establishes COTS product identification and its safety category. Based on safety category, one
of three sets of additional criteria, graded in rigor, is applied to approve (or disapprove) the product. These criteria
fall roughly into three areas. product assurance, verification of safety function and safety impact, and examination of
usage experience of the COTS product in circumstances similar to the proposed application.

Several conclusions are drawn. First, it is feasible to design an acceptance process based on a classification of
software with respect to itsimportance to safety. Second, the rank order of acceptance criteriais dictated by data
dependencies. The exercise of satisfying first-ranked criteria produces data that are necessary for the remaining
criteria. Thus, no basis for satisfying subsequent criteriaexists if “upstream” criteria are not satisfied. Finally, no
single standard extant at this writing completely addresses the acceptance problem. Taken in combination, however,
ausable set of criteriafor determining the acceptability of a COTS software item can be derived from IEC, |EEE,
and 1SO standards. Based on the results, it appears that acceptable COTS software items can be produced by vendors
who are generally aware of the risks associated with systems important to safety and who employ accepted software
engineering practice to produce high-integrity software.

Section 1. Introduction

A PROPOSED ACCEPTANCE PROCESS
FOR COMMERCIAL OFF-THE-SHELF (COTYS)
SOFTWARE IN REACTOR APPLICATIONS

1.0 INTRODUCTION

1.1 Scope

This report addresses the use of commercial off-the-
shelf (COTYS) software in those nuclear power plant
(NPP) systems that have some relationship to safety.
The report proposes a process for determining the
acceptability of COTS software using a classification
scheme based on the importance to safety of the system
in which the COTS product will be used. Since
software testing is related to the acceptance process,
the report, Testing Existing Software for Safety-Related
Applications, has been included as Appendix B of this
report.

1.2 Purpose

The purpose of this report is to present a proposed
acceptance process, based on areview of current and
draft standards, for the use of COTS softwareitemsin
NPP systems important to safety. The processis
centered on suitable “acceptance criteria’ that are
supported by inclusion in amajority of standards
publications or work-in-progress and that are
consistent with NRC practices and regulatory purview.

1.3 Definitions

Key terms used in the report are defined below.
Class 1E

The safety classification of the electric equipment and
systems that are essential to emergency reactor
shutdown, containment isolation, reactor core cooling,
and containment and reactor heat removal, or are
otherwise essential in preventing significant release of
radioactive materia to the environment.

Commercial-grade item

A structure, system, or component, or part thereof that
isused in the design of a nuclear power plant and
which could affect the safety function of the plant, but

was not designed and manufactured as a basic
component.1

Commer cial-grade dedication

An acceptance process undertaken to provide
reasonable assurance that a commercial-grade item to
be used as a basic component will perform its intended
safety function and, in this respect, will be deemed
equivalent to an item designed and manufactured under
a 10 CFR Part 50, Appendix B, quality assurance
program.?

Critical software

Software that is part of, or could affect, the safety
function of a basic component or acommercial-grade
software item that undergoes commercial-grade
dedication.

Important to safety
A structure, system, or component:

a. whose failure could lead to a significant radiation
hazard,

b. that prevents anticipated operational occurrences
from leading to accident conditions, or

c. thatisprovided to mitigate consequences of
failure of other structures, systems or components.

This encompasses both safety and safety-related
systems.

Safety-related

Pertaining to systems important to safety but that are
not safety systems.

1 This definition is sufficient for this report; see 10 CFR Part 21 (in
the revision process as of thiswriting) for the complete current
definition.

2Since this report is concerned with the specifics of gaining
reasonabl e assurance, and not with the aspects of 10 CFR that will
apply following the actual acceptance of acommercial-grade item,
the process of gaining assurance is called an “ acceptance process’
rather than a“commercial dedication process.”

Safety systems

Those systems that are relied upon to remain functional
during and following design basis events to ensure (a)
the integrity of the reactor coolant pressure boundary,
(b) the capability to shut down the reactor and maintain
it in a safe shutdown condition, or (c) the capability to
prevent or mitigate the consegquences of accidents that
could result in potential offsite exposures comparable
to the 10 CFR Part 100 guidelines.

Satistical certainty

An assertion made within calculated confidence limits
supported by data samples and an underlying
distribution theory.

Satistical validity

An assertion is statistically valid if the attributes of the
data supporting the statistical certainty of the assertion
are consistent with the inference to be made.

(Theterm, statistical validity, isused in several places
in this report to refer to operating experience of a
commercial-grade software item. The connotations of
this usage are:

» for each datum in the operating experience
database, the version and rel ease numbers of the
involved software item are identified and match
the target commercial-grade software item; and,

» for each datum, the operating environment,
configuration, and usage are reported and match
the intended environment, configuration, and
usage of the target commercial-grade software
item; and,

» al received reports and incident details are
recorded in the database, regardless of initial
diagnosis; and,

+ anestimate3 is made of the expected number of
unreported, unique incidents,# with confidence
limits; and,

» thenumber of reportsin the database, the
confidence interval, and the expected number of
unreported severe errors are consistent with the
intended use of the commercial-grade software
item.)

3An estimate can be made from the frequency distribution of reports
of unique incidents, or direct sampling of the software user data
source.

4 unique incident is one that, after root-cause analysis, has a
different root cause from all previously reported incidents.

Section 1. Introduction

1.4 Background

Considerable interest existsin the nuclear power
community in the potential use of commercial off-the-
shelf software in nuclear power plant systems. For
safety-related systems, it is necessary to evaluate the
acceptability of the COTS software for use in the
system and then to formally designate the COTS
software as a“ basic component” of a system essential
to reactor safety. Thisisreferred to as “ dedication of a
commercial-grade item” by 10 CFR Part 21, although
the term “commercia dedication” was sometimes also
used to signify only the formal acceptance of the
product and assumption of 10 CFR 21 defect-reporting
responsibilities. Since this report addresses only the
evaluation and acceptance of COTS software in both
safety-related systems and in other systems important
to safety, the processis referred to herein as an
“acceptance process.”

The acceptance process used to determine the
acceptability of a COTS software item is currently the
subject of much debate. This section of the report
discusses key issues related to the feasibility of using
COTS software in systems important to safety, a brief
discussion of the varying perspectives of typical
participants, and background information regarding the
development of the proposed acceptance process. The
following sections of this report address the
classification of software to be used in NPP systems,
discuss how various standards influenced the proposed
acceptance process, and describe the proposed
acceptance process itself.

1.4.1 COTSBackground and Feasibility

1.4.1.1 Commercial-Off-the-Shelf Software and its
Acceptability

COTS software has the potential to yield large cost
savingsif it can be used in safety systems and other
systems important to safety in nuclear power plants.
The COTS software of interest typically includes
compilers, operating systems, software supplied in
Programmable Logic Controllers (PLCs), and software
in commercial industrial digital control systems. The
problem faced by the nuclear reactor industry isto
show that a particular COTS product, which may be
useful in anuclear reactor instrumentation and control
system, has sufficient reliability for the application.
The best solution to the problem isthat the software
engineering group that produced the product did its
work using the necessary processes for producing high-
quality software, and that evidence of this (including
documentation, tests, inspections, quality
assurance/control, verification and validation, and
various other quality-related activities) is available for
inspection by the prospective buyer. Lacking this
favorable situation, some minimum standards by which
a COTS product is judged should be available. The

central issuein establishing these minimum standards
isthat the COTS product must be shown to have
sufficient quality for itsintended application. A
fundamental concern for regulators in approving an
acceptance processisthat if the process is significantly
less rigorous than normal regulatory review of software
developed in-house, it may become a conduit for
escaping necessary scrutiny.

To date, this process has been rather informal.
Recently, a number of standards committees have been
addressing the problem of formalizing the process.

V arious techniques have been proposed for dealing
with specific technical problems frequently
encountered in applying acceptance processes;
however, considerable controversy still surrounds
many of these.

1.4.1.2 Feasibility Issues

The primary motivation for considering the use of
COTS software as an dternative to a new software
development isto avoid unnecessary devel opment
costs. Although the cost savings appear obvious at first
glance, there are important issues affecting costs that
require careful consideration. Many of these issues
relate to the fact that the potential COTS software
product must be demonstrated to be of sufficient
quality for itsintended application in a system
important to safety.

One such issueis the existence, availability, and
relevance of information needed to demonstrate
quality. Discussions regarding the demonstration of
confidence in COTS software products (Gallagher,
1994) indicate that there are basically three potential
sources for pertinent information: an examination of
the development process and the associated product
documentation, testing of the COTS software product,
and an examination of the operational history
associated with the product. The workshop participants
speculate that information from these sources might be
used in varying mixtures depending on context; but
they provide no details on how this might be done
while ensuring that the appropriate quality is
demonstrated. There is a danger that such aternatives
could be used to avoid the scrutiny attached to new
software development efforts.

Relevant standards indicate that information from all
three sources is needed and that possibilities are
limited regarding recourse to one source when
information is not available from another. The core
information is provided by product documentation,
records, and details of the development process applied
to the product. Testing of a COTS software product
can be used for several purposes, including

e augmenting the testing effort conducted during
development

Section 1. Introduction

e addressing requirements specific to the proposed
application of the COTSitem in a system
important to safety

« verifying of the intended functions of the product,
and

. ng the quality of testing activities carried
out during development (see Appendix B of this
report for information on testing with an emphasis
on COTS products).

Operational history provides supplementary
information that can complement testing. The draft
supplement to IEC 880 states that “for safety critical
(Category A) systems, the feedback of experience
should never prevent a careful analysis of the product
itself, of its architecture, of how it has been developed
and of the validation of all the functionalities intended
to be used in the design.” IEEE-7-4.3.2-1993, in its
discussion of qualification of existing commercial
computers, states that “ exceptions to the development
steps required by this standard or referenced
documents may be taken aslong as there are other
compensating factors that serve to provide equivalent
results.” For an information source to provide
“equivalent results,” the subject of the compensation
must be tightly focused on a particular technical
question, and it must be shown how the compensating
information is equivalent to the missing information.
For safety-essential systems, the necessary
demonstration of quality will require extensive
information about the product and arigorous analysis
of that information. Options for dealing with missing
information are limited and require careful
consideration and documentation. The activities
required for demonstrating quality may be quite costly.

Another consideration associated with demonstrating
confidence in a COTS software product is the potential
impact of functions contained in the COTS software
that are not required for its proposed application, such
as undocumented functions or unused resident
functions (called “unintended functions’ and “unused
functions” in this report) The commitment to use
COT S software requires that the potential impact of
unintended functions and inadvertent actuation of
unused functions be assessed in the process of
determining acceptability. The activities required to
make this assessment can represent significant
additional costs.

In addition to the costs described above, the problems
associated with maintaining and tracking COTS
software status should be considered carefully,
especially defect reporting as detailed in 10 CFR Part
21. The downstream costs associated with effecting
this maintenance and tracking capability may be
comparable to those associated with software
developed directly for the NPP environment. This area

includes configuration management and the vendor’'s
long-term role, obsolescence and the potential cost of
system redesign, bug tracking and reporting
commitments, and the implementation and
requalification of bug fixes.

1.4.1.3 Perspectives on Acceptability Evaluations

New software developed for the NPP environment can
be controlled from inception to address a wide variety
of assurance and safety considerations. Thisis not the
case for COTS software, which has already been
developed, and whose developers may be responsive to
anumber of commercial objectives unrelated to NPP
safety. In particular, the COTS product is unlikely to
have been the result of development processes
specifically attuned to safety and hazards analyses of
NPPs.

Thisis economically important because COTS
software products may supply needed functions where
it isimpractica to implement those functions by
developing new software. For this approach to be safe,
guestions that need to answered are

1. What assurance and safety considerations should
be addressed?

2. Isthe COTSitem fully consistent with those
considerations?

The rigor of these questions is affected by the relative
importance to safety of the proposed COTS software
item. Thefirst issue to addressin evaluating
acceptability isimportance grading (classification)
with respect to safety role. Given the proposed saf ety
classification of an identified COTS item, the next
problem is verification of its properties and quality.

If the COTS item was produced by a vendor with
systematic and well-controlled software processes,
many of the documentary products necessary to make
the product and process determinations will exist and
be verifiable, and therefore determination of properties
and quality would be fairly straightforward. If the
COTS item was produced in aless mature
development environment, the issue is complicated by
the fact that quality assurance processes may not have
been employed, or may have been employed in an
inconsistent fashion. In this case, the COTS item
performance of its functions is suspect, and assurance
investigations to address this question are hampered by
the lack of—or poor quality of—the associated
materials that would have been generated by a mature
software process.

The problems of identification of safety role and
verification of properties and quality are complicated
by the fact that there are three perspectives on the
evaluation of acceptability:

Section 1. Introduction

e the producer of the COTSitem, i.e., the COTS
software vendor

e theuser (customer) of the COTSitem, i.e.,, a
reactor vendor or an owner/operator doing a
retrofit

e theregulator responsible for approving the use of
the COTS item. The regulator has the legal
responsibility of certifying that the NPP in which
the COTS item will be used is safe.

The effect of these perspectives can be demonstrated
by considering various scenarios for the evaluation of a
particular COTS product.

Scenario 1. A COTS software vendor wants to
dedicate a product for specific uses.

In this case, the COTS software vendor would be
directly concerned with regulator needs and user needs
during the acceptance process, implying a cooperative
COTS software vendor that probably has relatively
mature software devel opment processes. The vendor is
motivated by business advantage, possibly with respect
to meeting similar standardsin other fields (e.g.,
environmental), and takes responsibility for generic,
but not specific, safety analyses.

Scenario 2: A COTS software user—for example, a
reactor vendor—dedicates a COTS product for usein a
reactor design.

The COTS software vendor may not be strongly
motivated, in which case a good reactor vendor
relationship with COTS software vendor would be
instrumental in the acceptance process. The reactor
vendor would be responsible for coordinating activities
with the COTS software vendor and with the regulator,
and for specific safety analyses.

Scenario 3: A COTS software user—for example, an
owner/operator—dedicates a COTSitem for useina
retrofit.

An owner/operator will have along-standing
relationship with the regulator, but perhaps not with
respect to software development issues. An
owner/operator is somewhat removed from the original
reactor vendor and may not have the same
understanding of the design subtleties of reactor
systems important to safety. The owner/operator would
probably use the reactor vendor’ s existing
thermal/hydraulic safety analyses, but would be
responsible for determining the COTS product safety
functions. An owner/operator may also be more
removed from the COT S software vendor than the
reactor vendor.

Scenario 4: Aregulator permits use of a previously
qualified COTSitemfor a certain class of service.

This scenario would be a generalization of an existing
qudlification of the COTS item by an applicant. The
regulator would need to have high confidence in the
COTS item. There would be possible standardization
benefits, but these would depend upon the acceptability
to the regulator of safety analyses regarding class of
service, as opposed to plant-specific analyses.
Dedication for generic class of service would not
absolve the designer using the COTS item from
performing specific, use-related safety analyses.

1.4.2 Background on the Proposed Acceptance
Process

1.4.2.1 Classification

While it is necessary to demonstrate that a COTS item
has sufficient reliability for itsintended application, it
is also important that the demonstration be
commensurate with the importance to safety of the
COTSitem. That is, the acceptance process must
ensure sufficient quality but should not require
unnecessary effort. Just as reactor subsystems and
equipment are regulated primarily in proportion to their
importance to reactor safety, COTS products should be
reviewed with a stringency proportional to the safety
function they are intended to provide. This alows
regulatory resources to be applied efficiently and does
not burden reactor vendors with unnecessary
requirements.

1.4.2.2 Basisfor the Acceptance Criteria
Current Sandards

Standards for software quality assurance (SQA),
software configuration management (SCM), software
verification and validation (SVV), and software criteria
for use in nuclear power plants were reviewed for
criteria appropriate to COTS products. In many cases,
no explicit provision is made for adapting existing
software to acritical application; the standards assume
that such software will be devel oped as new software
products. There are provisions for qualifying software
products for use in producing the final product, but in
most cases, these provisions amount to ensuring that
the standard itself was employed by the software
subcontractor. The following standards were reviewed
to determine criteria either explicitly required for
COTS products or implicitly required because the
COTS product was required to conform to the
standard:

* |EEE 730 (Now 730.1), “|EEE Standard for
Software Quality Assurance Plans’

» |EEE 983 (P730.2, Draft 4), “1EEE Guide for
Software Quality Assurance Planning”

Section 1. Introduction

* |EEE 828, “IEEE Standard for Software
Configuration Management Plans’

¢ |EEE 1042, “|EEE Guide to Software
Configuration Management”

e |EEE 7-4.3.2, “ Standard Criteriafor Digital
Computersin Safety Systems of Nuclear Power
Generating Stations’

e SO 9000-3, “Guidelines for the Application of
SO 9000-1 to the Development, Supply, and
Maintenance of Software”

¢ ANSI/ANS-10.4, “Guidelines for the Verification
and Validation of Scientific and Engineering
Computer Programs for the Nuclear Industry”

« ANSI/IEEE 1012, “IEEE Standard for Software
Verification and Validation Plans’

e |EC 880, “ Software for Computersin the Safety
Systems of Nuclear Power Stations”

e |EC 987, “Programmed Digital Computers
Important to Safety for Nuclear Power Stations’

An overview of the pertinent aspects of each of the
listed standardsis given in Section 3, and a detailed
multi-tabular list of criteria abstracted from the
standards may be found in Appendix A.

New Standards Activity

New work is being performed on acceptance criteria
for COTS products by the IEC, driven by the potential
economic advantage of being able to use existing
software products. A draft addition to |EC 880 was
used to review the criteria extracted from existing
standards for completeness and applicability. Thisis
discussed in overview in Section 3.10. |[EC 1226
provides a de facto safety categorization, which is
discussed in detail in Section 2.1. The following
emerging or new standards were reviewed:

e First Supplement to IEC 880 (Draft), “ Software
for Computers in the Safety Systems of Nuclear
Power Stations’

e |EC 1226, “The Classification of Instrumentation
and Control Systems Important to Safety for
Nuclear Power Plants.”

Design Factors

Previous work on vendor assessment (Lawrence &
Preckshot, 1994, Lawrence et al., 1994) was applied to
check the reasonableness of the COTS assessment
criteria derived as described above. It became clear that
the design factors primarily address product assurance
issues, which for COTS productsis only part of the
problem. The vendor assessment work also provides

the approach and rationale for judging the COTS
assessment criteria against NRC needs.

NRC Review

A preliminary version of this report was presented to
the NRC. The comments received at that meeting have
been incorporated into this version of the report.

Expert Peer Review Meeting on High-Integrity
Software

This meeting was conducted by Mitre Corporation for
the NRC Office of Nuclear Regulatory Research, and
substantial discussions on COTS issues ensued.
Material from the NRC was provided by an NRC
representative. Excerpts from these discussions were
analyzed and considered in completing this version of
the report.

1.4.2.3 Acceptance Process, Criteria, and Conclusions

Whileit is not possible to completely eliminate
subjectivity and the consequent variahility of results,
the acceptance process presented in Section 4 has been
developed to a sufficient level of detail to promote
reasonable uniformity of results on each key element.
The process consists of preliminary activities that

apply regardless of safety category, followed by a set
of activitiestailored to the particul ar safety category
established for the COTS item in itsintended usage. A
set of ranked criteriais listed for three safety categories

Section 1. Introduction

based on review of the criterialisted in Appendix A.
The acceptance process is compatible with IEEE-7-
4.3.2-1993, with detail supplied from other standards
in places where | EEE-7-4.3.2 requires “ engineering
judgment.” Thislevel of stringency is consistent with
the body of IEEE-7-4.3.2, which addresses software
development in general. The systems-oriented
approach of the |EC standards has had a significant
influence on the resulting list of acceptance criteria,
adding arisk assessment step that the other standards
lack. Aninteresting and possibly surprising conclusion
isthat the rank order is the result of simple data
dependencies. The achievement of a particular criterion
is dependent upon satisfaction of preceding criteria, so
that from a practical viewpoint, the importance of
individua criteria cannot be decided in isolation.

Section 2. Safety Categories

2.0 SAFETY CATEGORIES

Safety categorization fulfillsitsintended purpose if
sufficient categories exist to enable efficient
application of regulatory resources, but not so many
that efforts are fragmented. The appropriate number
appears to be more than two (safety and non-safety)
and less than five. The categorization problem has
three parts. Thefirst is to define categories, for which
this paper has recourse to IEC 1226. The second isto
deduce to which category a COTS product belongs,
which is discussed below. The third part isto decide
what rigor of acceptance processis appropriate to each
category, which is considered in Section 4.

2.1 |EC 1226 Categories

|EC 1226 proposes, by implication, four categories—
A, B, C, and unclassified—which in this context means
“has no safety impact.” Rather than repeat IEC 1226
definitions, Table 1 shows by example some familiar
reactor systems and where they would be placed in the
IEC 1226 scheme (IEC 1226 2/6/93, Annex A). IEC
1226 category A isvery similar to IEEE Class 1E. An
approximate equivalence to Regulatory Guide 1.97
signal categoriesisalso shown.

2.2 COTS Usage Categories

Unfortunately, many COTS products do not fit neatly
into |EC 1226 categories. Thisis because COTS
products, although there may be extant exampl es of
category A, B, or C usage, are also used in supporting
roles that may affect software in categories A, B, or C.
Table 2 below summarizes the possibilities.

Table 3 formalizes the decision process detailed above.
The operative principles are that if an error in COTS
software can occur in operation important to safety or
can embed an error in other software important to
safety, then the COT S software takes on the category
of the software in which the error can occur. If the
COTS software can only challenge software important
to safety, possibly exposing existing errors, then the
COTS software takes on the next lower safety
category. Since category C has relatively low
reliability requirements, software that produces
category C software may be of standard commercial
quality (unclassified).

2.3 Special Note on Compilers, Linkers,
and Operating Systems

Compilers, linkers, operating systems used for
development, and similar COTS software are among

those COTS products that have potentials for
embedding errorsin software that is essential or
important to safety, but are not themselves executing
when the error causes a challenge. Most standards are
silent or say very little about qualifying such software,
because the dilemmais a difficult one to resolve. In
general, thereis atrade-off; isit safer to use or not to
use such a product? If the answer were asimple “don’t
useit,” safety software would still be written in
machine language, an obvious absurdity. Even with the
success of modern software tools, however, trusting
acceptance of such toolsis not recommended. Tools
should be rated for safety impact as detailed in Tables
1-3, and assurance methods used for similar tools used
for hazardous applications should be applied.

For example, the draft supplement to IEC 880 notes
that it can be quite difficult to demonstrate that a
compiler works correctly. The draft supplement states
that “Even validated compilers have been found to
contain serious errors.” Thiswasillustrated by the
experience with Ada compilers; there was a
considerable delay before qualified Ada compilers
became generally available. An “ Ada qualification
suite” of programs that an Ada compiler should
successfully compile or detect errorsin now has
hundreds of thousands of programs and is still growing
as compiler writers discover newer and subtler waysto
introduce bugsin Ada compilers.

Because of the difficulties associated validating
compilers, linkers, and operating systems, the
evaluation should be based on best available
information and should be continuous while the tool is
in use. Where qualification tests exist (such as the Ada
qualification suite), only products that pass such tests
should be accepted. In addition, extensive statistically
valid operational experience isimportant in these cases
because the validation effort is beyond the skills of
most unspecialized software devel opers. Sometimes
this may mean using a product version that has a
known bug list as opposed to the latest version on the
market. There may belessrisk in using an older
version and avoiding well-known bugs than in using
the latest version with a high expected level of
unreported, severe errors. These considerations also
apply, to alesser extent, in the category B and category
C processes described in Sections 4.3 and 4.4 below.

Table 1. Safety Categories

Section 2. Safety Categories

|[EC 1226 Example Systems RG 1.97

Category Equivalent
Category

A Reactor Protection System (RPS) A,B

Engineered Safety Features Actuation System (ESFAS) A,B
Instrumentation essential for operator action A,B,CD
B Reactor automatic control system
Control room data processing system
Fire suppression system
Refueling system interlocks and circuits E
C Alarms, annunciators B,CD,E
Radwaste and area monitoring CE
Access control system
Emergency communications system
Table2. COTSUsage Categories
Usage Description Equivalent
Category IEC 1226
Direct Directly usedinan A, B, or C application. A,B,orC
Indirect Directly produces executable modules that areusedin A, B, or C
applications (software tools such as compilers, linkers, automatic
configuration managers, or the like).
Produces A modules AorB®
Produces B modules BorC6
Produces C modules unclassified
Support CASE systems, or other support systemsthat indirectly assistin | unclassified
the production of A, B, or C applications, or software that runs
as an independent background surveillance system of A, B, or C
applications.
Unrelated Software that has no impact on A, B, or C applications. unclassified
Table 3. COTS Safety Category Criteria

1 If the COTS product is used directly in a system important to safety, the COTS safety category
is determined by the criteriaof IEC 1226.

2 If the COTS product directly produces or controls the configuration of an executable software
product that is used in a system important to safety, and no method exists to validate the output
of the COTS product, the COTS safety category isthe same as that of its output, except that
category C software may be produced by COTS products of the unclassified category. COTS
software that directly produces category A or B software that is validated by other meansis
category B or C, respectively.

3 If the COTS product supports production of category A, B, or C software, but does not directly
produce or control the configuration of such software modules, it falls under the safety category
“unclassified.”

4 If the COTS product has no impact on category A, B, or C software or systems, it falls under
the safety category “unclassified.”

5The choice of A or B category depends upon whether the A module has diverse alternatives or whether there is another software tool, treated as
category A, that verifies the output of the subject tool.

6 The choice of B or C category depends upon whether the B module has diverse alternatives or whether there is another software tool, treated as
category B, that verifies the output of the subject tool.

Section 3. Overview of Standards Reviewed

3.0 OVERVIEW OF STANDARDS REVIEWED

If there is a general philosophical difference between
standards, it may be the tendency to take a pro forma
approach versus the tendency to be prescriptive.
Predominantly pro forma standards, such as |[EEE and
I SO software standards, require devel opers to produce
documents and perform certain activities, but do not
prescribe many details or pass/fail criteria. Abstracting
criteriafrom such standards requires judgment and
understanding of the underlying software production
and validation processes, an endeavor that may be
subject to differing opinions. Standards that tend to be
prescriptive, of which the three |EC standards are
examples, are more detailed and leave less to
professional judgment, although they do not eliminate
the potential for differing viewpoints. A detailed
standard may lose current applicability, requiring
professional judgment to apply its stricturesto
evolving technology. In the following, our estimate of
the approach taken in each standard is mentioned.

3.1 |EEE 730 (Now 730.1)

IEEE 730.1 is apro forma standard that describes the
activities and documentation required for software
quality assurance (SQA) plans. By implication, this
standard addresses only two formal categories of
software (critical and non-critical). Some or al of the
standard may be applied to non-critical software, but
the degree of application is optional. The standard acts
as an umbrella standard in the sense that it requires
some sort of software configuration management
(SCM) and some sort of software verification and
validation (SVV). Other |EEE standards on SCM and
SVV are referenced by this standard. Table A-37 lists
the activities and documentation required, which are
presumed to extend to safety-critical COTS products
by Table A-3, entry 9 and Table A-9, entry 1.

3.2 |EEE 983 (P730.2, Draft 5)

This standard is a guidance standard for applying |IEEE
730.1. Assuch, it does not supersede the requirements
of that standard or impose additional requirements. It
provides clarification, asin Table A-3, entry 6, and all
entriesin Table A-11.

3.3 |IEEE 828

| EEE 828 presents pro forma requirements for
activities and documentation in software configuration
management plans for all criticality levels of software;
the standard makes no distinction between levels.

7Tablas marked with an A- may be found in Appendix A.

Table A-4 lists the detailed requirements for
configuration management plans. Entry 8 in thistable
lists the crucial points with regard to configuration
management maintained by a supplier. IEEE 828
requires a description of how acquired software will be
received, tested, and placed under SCM; how changes
to the supplier’ s software are to be processed, and
whether and how the supplier will participate in the
project’ s change management process. |EEE 828 does
not address COT S software explicitly, or specify
criteriathat software configuration management
systems of a COT S software vendor should meet.

3.4 |EEE 1042

|EEE 1042 provides guidance by example for applying
|EEE 828. As a guidance standard, this document does
not contradict or add to the requirements stipulated by
|EEE 828.

3.5 1S0O 9000-3

The SO 9000 standards apply to quality assurance
programsin general, and are not limited to software.

I SO 9000-3 interprets the general standards as applied
to software, and fulfills somewhat the same role as
IEEE 730.1; that is, it is a pro forma standard that acts,
in part, as an umbrella standard, mentioning other
aspects of software quality such as SCM and SVV. The
| SO standards are more contractually oriented than the
|EEE standards, and somewhat more generally written
asfar ascriteriafor standard adherence are concerned.
Tables A-3, line 9, Table A-4, line 8, and Table A-9,
line 1 reflect the 1SO view of subcontracted or existing
software products.

3.6 ANSI/ANS-10.4

This standard regards verification and validation of
scientific and engineering programs for use in the
nuclear industry, and typical programs used for
simulation or design of reactors or reactor subsystems.
It isthe only standard, of al reviewed, that considers
the question of verification and validation of existing
computer programs for which thereislittle or no
documentation. This probably reflects the actual
situation extant with this type of software; little or no
formal software engineering method is applied during
software development, leaving a software product of
unknown reliability. ANSI/ANS-10.4 suggested many
of theentriesin Tables A-6, A-12, and A-13, and was
useful in expanding the functional requirements of
ANSI/IEEE 1012.

3.7 ANSI/IEEE 1012

Thisisapro forma standard that describes the
activities and documentation required for verification
and validation of critical software. An example of the
difference between the pro forma and prescriptive
approach can be seenin Table A-12, wherein
ANSI/ANS-10.4 is used to expand the minimum V&V
tasks specified by |IEEE 1012 with criteriafor
performance. V&V tasks are construed to apply to
COTS products by virtue of the requirementsin IEEE
730.1, asexpressed in Table A-9. ANSI/IEEE 1012 is
summarized in Table A-5 and auxiliary tables that
expand detailed V&V requirements.

3.8 IEC 880

IEC 880 is a prescriptive standard which offers
detailed criteria that software under its purview must
satisfy. The relatively poor organization of this
standard may detract from its effectiveness, but it is
consistently better than the IEEE standardsin its
“systems” approach. Risk-related requirements are
emphasized, as are interfaces with and relations to
other systems and hardware, which differs significantly
from the IEEE and 1SO standards. The following five-
point summation of Section 5 of IEC 880 illustrates the
risk-based approach:

» Safety relevance of software parts should be
determined;

» Morelimiting recommendations apply to risky
parts;

» High-safety-impact software modules should be
easily identifiable from system structure and data
layout;

* Availabletesting and validation procedures should
be considered when doing the design;

» |If difficulties arise, aretrospective change of style
may be required.

“Self supervision” is required, meaning that the
software includes code to detect hardware errors and
errors committed by software. Self supervisionis only
regarded in the literature as effective for detecting
hardware errors; considerable controversy still exists
on whether effective means exist to detect software
errors with more software.

3.9 IEC 987

IEC 987 is a systems and hardware prescriptive
standard that defers to |EC 880 on specific software
issues. The “systems’ slant of IEC 880 is discussed
above.

10

Section 3. Overview of Standards Reviewed

3.10 IEC 880, First Supplement to IEC
880 (Dr aft)

|EC 880 provided a strong connection between risks or
safety and software (or system) requirements, and this
connection is continued and enhanced in the draft
supplement. This document places strong emphasis on
determining the safety functions that a COTS product
will perform before deciding on the rigor of the
acceptance process to be followed. This is combined
with a strict view of experience data; for important
safety functions, COTS experience data must be
relevant and statistically valid. The draft addition had a
significant effect on the review of candidate acceptance
criteria compiled from the IEEE and | SO standards.
With the exception of entry 3, all other entriesin Table
4, below, were motivated by the IEC 830 supplement.
Likewise, items 7—9 of Table 5, and items 7 and 8 of
Tables 6 and 7 can be specifically attributed to IEC
880’ s strong requirement for risk coverage. (These
tables may be found in Section 4.) The IEC 880
supplement also had particular criteriafor judging
experience databases, and thisisreflected in entries 10
and 11 of Table 5, and entries 9 and 10 of Tables 6
and7.

3.11 IEEE-7-4.3.2-1993

While the proposed acceptance process presented in
this report draws heavily on |[EC 880, it isalso
generaly consistent with |EEE-7-4.3.2-1993. This
standard addresses testing for COTS items as well as
consideration of software development methods and
operating experience. The standard has a subjective
nature, however, as evidenced by the following:

“Exceptions to the devel opment steps required
by this standard or referenced documents may
be taken as long as there are other
compensating factors that serve to provide
equivalent results.”

“Acceptance shall be based upon an
engineering judgment that the available
evidence provides adequate confidence that
the existing commercial computer, including
hardware, software, firmware, and interfaces,
can perform its intended functions.”

While the general intent of these passagesis clear,
thereis room for avarying strictness of interpretation.
In interpreting these passages with respect to the
acceptance process proposed in this report, it was
assumed that it must be explicitly and convincingly
shown how information from a compensating factor
provides equivaent results and, when engineering
judgment is used, that it be applied to specific,
narrowly defined questions and that its basis be
convincing and documented. This standard was

Section 3. Overview of Standards Reviewed

reviewed in this context for possible omissionsin the of safety categories. This standard uses terms familiar

candidate list of COTS acceptance criteria to those involved in nuclear power plant safety:
redundancy, diversity, defense-in-depth, and reliability.

3.12 IEC 1226 While other choices of safety category could be made,

the categories in this standard are credible and usable.
IEC 1226 provides the missing link that the other egonesin I !
standards discussed herein lack: a consistent definition

11

Section 4. Proposed Acceptance Process

4.0 PROPOSED ACCEPTANCE PROCESS

The proposed acceptance process is based on the
classification scheme described in Section 2 and on a
set of acceptance criteria derived from the standards
described in Section 3. It is broken into two phases. a
preliminary qualification phase, and a detailed
qualification phase. The preliminary qualification
phase appliesto all COTS products, regardless of the
ultimate safety categorization. This phaseis concerned
with understanding system safety requirements,
understanding the COTS product’s proposed rolein a
system important to safety, unambiguously identifying
the COT S product, and determining the rigor of
subsequent qualification procedures. The detailed
qualification phase activities vary in rigor and content
depending upon the result of the preliminary phase.
Successful completion of the appropriate detailed
phase qualifies (pending formal acceptance/dedication)
the COTS item for the specific intended use that was
analyzed and documented in the preliminary phase.

The proposed COTS acceptance criteria are presented
in Table 4 in dependency order in tabular form. A short
discussion of each criterion and the reason for
dependency on previous criteria or why subsequent
criteria are dependent follows. Aswith an earlier
assessment of software design factors (Lawrence &
Preckshot 1994), COTS acceptance criteria were
reviewed for potential effect of each criterion,
observahility, and pertinence to NRC practices and
procedures. The product quality of greatest pertinence
to NRC concernsis the product’s potential safety
impact or safety category. For this reason, safety
category determines differencesin the rigor of the
acceptance criteria. The criteria presented below are
organized into four tables, with the latter three
corresponding to acceptance process requirements
specific to each of the three safety categories. The first
table corresponds to the preliminary phase of the
process and directs the reviewer to the applicable table
of the latter three. In a number of cases, recourse is

taken to the Appendix for detailed requirements. This
does not imply that these requirements are less
important, but only that the level of detail may obscure
the instant discussion.

4.1 Commercial-Grade Dedication for
Class-of-Service

When a COTS item is accepted for a generic class of
service, adistinction must be made between the
responsibilities of the dedicator and the designer who
applies the product to a specific safety application. The
dedicator is responsible for generic safety issues, such
as defining the service class, the criteriafor deciding if
aparticular application falls within that service class,
defect reporting responsibilities that must be assumed
by the prospective user, and the design verification
techniques that must be used by the designer applying
the generic COTS item to a particular safety
application. The commercial dedication process
verifies that the COTS item is of sufficient quality and
has the required functions to meet class-of-service
functional requirements. Equally important, the
dedicator’ s review of product software requirements
and software quality assurance provides confidence
that unintended functions are unlikely and that reliable
means exist to prevent the activation of unused
functions.

Commercial-grade dedication for a generic class-of-
service cannot absolve the application designer of the
responsibility for making a safety case for specific
applications of the dedicated COTS item. In this
respect, COTS software is no different than a dedicated
commercial-grade hardware item, such as arelay; the
product received must still be shown to be the product
specified, and the design using the item or the method
of application must still be shown to be correct and
consistent with the terms of the dedication under
design control and quality assurance measures required
by 10 CFR Part 50, Appendix B.

Table4. Preliminary COTS Acceptance Criteria

1 Risk and hazards analyses shall be used to identify system-level safety functions required.

The safety functions (if any) that the COTS product will perform shall be identified.

SCM criteria.

The COTS product shall be under configuration and change control. See Table A-4 for detailed

4 The safety category of the COTS product shall be determined. Proceed to Table 5, 6, or 7
depending upon category A, B, or C, respectively.

13

4.2 Preliminary Phase of the Proposed
Acceptance Process

The preliminary criteria should be applied to all COTS
products, recognizing that some of these criteria
(criterion 1, for instance) will likely be reviewed for
other reasons. The ranking of these criteria (developed
below) is determined by data dependencies; that is,
satisfaction of earlier-ranked criteria (lower number
rank) produces information that is required to
determine if later-ranked criteria are satisfied.

4.2.1 Acceptance Criterion 1—Risk and Hazards
Analyses

System-level risk and hazard analyses must be
complete, as they provide the basis for determining the
required system safety functions, some of which may
be performed by the COTS item under review. For
generic class-of-service dedications, the system-level
risk and hazard analyses must define the plant and
safety environment in which the generic COTSitemis
expected to function. Since this analysisisthe
foundation upon which a safety determination is made
about COTS item usage, an incomplete analysis or
incomplete review of existing analyses may result in an
unreviewed safety question. Typically, such system-
level analyses are done for nuclear reactors as part of
the licensing process, but the analyses may require
updating to accommodate plant modificationsin
existing plants.

By implication, al of the IEEE and 1SO standards
assume that the risk category is already known. The

| EC standards make the requirement for understanding
risks explicit.

Rationale for ranking:

Risk and hazards analyses were taken as the criterion

required before any COTS product can be considered

because, if the system risks and hazards are unknown,
it isnot possible to determine what risks and hazards

are incurred by introducing a COTS product.

4.2.2 Acceptance Criterion 2—Identification of
Safety Functions

Once the system risks are known, determining how the
COTS product will fit into arisk management scheme
isnext. The intended use of the COTS item should be
completely described and documented, all the safety
functions of the COTS item should be fully described,
and the intended relationship of the COTS item to
other systems essential or important to safety should be
clearly stated. Any omitted usage, function, or
relationship is construed to be unintended, and may
result in an unreviewed safety question. A COTS item
is acceptable only for usage and functions that are
documented during the acceptance evaluation. A

14

Section 4. Proposed Acceptance Process

COTSitem that is being dedicated for generic class-of-
serviceis acceptable only for service within the
functional and performance limits established in this
step. This does not relieve an engineer applying a
generic class-of-service COTS item of the
responsibility for making a safety case for the
particular functions the COTS item will perform; the
generic dedication only supplies an acceptable way of
performing those functions provided terms and
conditions of the dedication are met.

| EC 880 makes this process explicit as “identifying the
safety functions’ of the software product, whether it is
COTS or to-be-devel oped software. |EEE-7-4.3.2-1993
refersto this criterion as “identifying the safety
functions the computer must perform.”

Rationale for ranking:

This step is not possible until the system-level risks
and hazards have been analyzed.

4.2.3 Acceptance Criterion 3—Configuration
M anagement

A mechanism for software configuration management
must exist, and the COTS product under review must
be clearly identified and under management control as
aconfiguration item. If a COTS product falls within
regulatory purview, regardless of potential safety
categorization, it should be identified as a
configuration item and be under configuration
management control, either by the COTS supplier, the
owner/operator, or the reactor system vendor. For
COTS products in nuclear reactor systems essential or
important to safety, the rigor of configuration
management should be independent of safety category.
The goal at this point in the processis to ensure that
the COTS product in question is a mature product that
has been completely and clearly identified to all parties
in the process. The configuration identification cannot
be a“moving target.” The configuration management
system will beimportant in later steps because of
ancillary items such as documentation and testing
materials, status reporting mechanisms, problem
reporting, change control, and release mechanisms.

Rationale for ranking:

Configuration management is ranked third because not
only do most standards and the design factors mention
thisasacrucia criterion (Lawrence & Preckshot,
1994), but because a poorly identified and uncontrolled
COTS product does not meet the intent of Criterion
VI, “Identification and Control of Materials, Parts,
and Components,” of Appendix B, “Quality Assurance
Criteriafor Nuclear Power Plants and Fuel
Reprocessing Plants,” of 10 CFR Part 50. The COTS
product that isinstalled must be the same COTS
product that was accepted.

4.2.4 Acceptance Criterion 4—Deter mination of
Safety Category

The safety category of the COTS iteminitsintended
use, as evaluated in Acceptance Criterion 2, should be
determined according to |EC 1226 using the guidance
given in Section 2. This determines the rigor of the
remaining criteria.

Rationale for ranking:

The product cannot be placed in a safety category until
the COTS product and its safety functions have been
identified.

4.3 Detailed Acceptance Criteriafor
Category A

Detailed acceptance criteriafor category A softwareis
listed below in Table 5.

Section 4. Proposed Acceptance Process

4.3.1 Acceptance Criterion A5—Product Assurance

For this category, the applicable standards require
COTS products to be developed to the same rigor that
would have been required were the product produced
as anew software development for the intended safety
application. A COTS product that was not devel oped
under a plan that included software requirements, a
software design, coding to internal or external
standards, testing, V&V, and quality assurance audits
would not be acceptable. An assessment of the COTS
software vendor’ s devel opment, validation and
verification, and quality assurance processes should be
made. Idedlly, the COTS software vendor will make
available the internal documents that can prove this. At
aminimum, for this software safety category, COTS
vendor development, testing, V&V, and quality
assurance policies and procedures should be
documented and the documents should be available.
Thisis an appropriate place to apply the design factors
described in Lawrence & Preckshot 1994, as avalidity
check on this assessment.

Table5. Category A COTS Acceptance Criteria

A5

12 for minimum required V&V tasks.

The COTS product shall have been developed under arigorous Software Quality Assurance
Plan as defined by |EEE 730.1, 1SO 9000-3, or IEC 880. This shall include full V&V.

See Table A-3 for detailed SQA criteria. See Table A-5 for detailed V&V criteria. See Table A-

A6

Documentation shall be available for review that demonstrates both Criterion A5 and that good
software engineering practices were used, as detailed in Table A-7. Evidence shall be available
that the minimum required reviews of Table A-8 were conducted.

A7
(Table 4).

It shall be demonstrated that the COTS product meets the requirements identified in Criterion 2

A8
constraints.

It shall be demonstrated that the COTS product does not violate system safety requirements or

A9

The interfaces between the COTS product and other systems or software shall be identified,
clearly defined, and under configuration management.

A10

match that of the proposed COTS product.®

The COTS product shall have significant (greater than 1 year) operating time,8 with severe-
error-free operating experience. At least two independent operating locations shall have used a
product of identical version, release, and operating platform encompassing the same or nearly
the same usage as the proposed usage. Any adverse reports, regardless of operating location,
shall be considered. The configuration of the products in the experience data base shall closely

All

All errors, severe or otherwise, shall be reported to and analyzed by the COTS supplier.
Procedures and incentives shall be in place to ensure a high level of demonstrated compliance,
or the COTS supplier shall demonstrate with statistical certainty0 that the error reporting
system achieves this compliance. An error tracking, documentation, and resolution procedure
shall document each error from report to resolution.

Al12

Additional validation and testing shall be performed if needed to compensate for a small
amount of missing documentation or alterationsin configuration.

8Measured as in-service execution time concurrently at two or more customer sites.

95ee the definition of statistical validity in Section 1.3.
10see the definition of statistical certainty in Section 1.3.

15

Satisfaction of this acceptance criterion by a generic
class-of-service COTS item does not absolve the user
of such anitem of the responsibility for quality
assurance measures in the application of the item. For
example, a programmable logic controller (PLC) must
be programmed in aladder-logic or other programming
language. Users of such devices would still be
responsible for a 10 CFR Part 50, Appendix B quality
assurance program, or whatever quality assurance
programs were required by their license basis, applied
to the design work the user does to incorporate the
class-of-service COTS item in basic components.

Rationale for ranking:

Product assurance activities are ranked fifth in
importance because thisis the first time that the rigor
required, the system safety requirements, and the
COTS product safety requirements are all known.

4.3.2 Acceptance Criterion A6—Product
Documentation

Theredlity of COTS products isthat documentation is
likely to be sparse and the COTS software dedicator
may have difficulty gaining access to proprietary
information related to software development.
Nevertheless, sufficient documentation must exist to
support the activities of following acceptance criteria,
i.e., the satisfactory performance of these activities
must not be prevented by missing documentation, such
as missing source code. At a minimum, product
documentation should include quality assurance
certification that the COTS product?! has met the
vendor’s own criteriaidentified in step A5—complete
product user documentation that describes in detail
how to apply and use the product, known bug lists, and
error recovery procedures. Availability of source code
is preferable; however, source codeis not included in
this minimum documentation unless questions
associated with the other acceptance criteria can only
be reasonably answered with approaches that include
analyses or testing based on the source code. For
example, questions about the adequacy of testing or
V&V procedures examined in step A5, or questions
raised based on the examination of operating
experience and error reporting in steps A10 and A1,
might indicate the need for additional static analyses or
structural tests. The demonstration in step A8 to
confirm that unintended functions will not impair
system safety or questions about interfacesraised in
step A9 could also indicate a heed for static analyses.

The product documentation should describe al of the
attributes identified in step 2 as necessary for
performance of the safety functions assigned to the
product. No undocumented feature can be used to
perform a safety function, or is acceptable for this

11, gentified by exact version and release designation.

16

Section 4. Proposed Acceptance Process

purpose. The user documentation should be testable;
that is, product operation should be described
unambiguously so that testing could determine if the
product were defective. Additional testing to establish
confidence in the product may be necessary.
Information on specific considerations for testing
COTS software can be found in Scott and Lawrence,
1995 (included as Appendix B). A product that does
not match the performance specifications in product
documentation is unacceptable.

Rationale for ranking:

Product documentation goes hand-in-hand with
product assurance and is a necessary item for the
evaluation of product and system safety.

4.3.3 Acceptance Criterion A7—Product Safety
Requirements

Assuming that product assurance and documentation
give confidence in knowledge of the COTS product’s
attributes, then it is appropriate to ask if these attributes
satisfy the safety functions expected of the product.

Rationale for ranking:

Product safety requirements are ranked seventh
because product attributes cannot be known with
reasonabl e certainty without product assurance and
sufficient detail without product documentation.

4.3.4 Acceptance Criterion AB—System Safety

Other attributes or qualities of the COTS product
should not impair system safety. COTS products,
because they must be commercialy viable, often have
functions or options beyond those required to satisfy
the identified safety functions of the previous criterion.
They may also have undocumented functions, or
“bugs.” These are the unused and the unintended
function problems, respectively, and they may be more
severe with COTS products because of extra functions
or configurations these products may have.

For unintended or unused functions, the role of the
dedicator, whether for generic class-of-service usage or
use in a specific basic component, is the same.
Confidence that unintended functions are unlikely is
obtained through applying Criteria A5 and A6. It must
be possible for a designer to prevent inadvertent
activation of unused functions so that unused functions
cannot be activated by unauthorized personnel or
foreseeable operator errors.

Additional system-level requirementsfall upon the
dedicator for class-of-service. Criteriafor when
defense-in-depth or diversity may be required must be
established. These criteria describe the allowable
fraction or enumerations of safety functions that may
be entrusted to the generic class-of-service COTS item,

after which defense-in-depth and diversity
considerations may require a different approach.

Rationale for ranking:

Just as product assurance was a necessary prerequisite
for determining if a COTS product satisfies its required
safety functions, it is aso aprerequisite for
investigating whether other known attributes or options
could defeat system safety goals. Thisis also not
possible without detailed product information available
in product documentation.

4.3.5 Acceptance Criterion A9—Interface
Requirements

Due to the requirement on category A subsystems for
single-failure robustness, the interfaces between
category A COTS products and other systems must be
known and investigated.

Rationale for ranking:

Interface requirements are ninth in sequence and
importance, all previous criteria being prerequisites.

4.3.6 Acceptance Criterion A10—Experience
Database

Category A products require the most rigorous and
statistically valid!2 experience data. These data must
be for the same version of the COTS product in the
same or nearly the same environment and usage.

Rationale for ranking:

If any of the previous criteria are violated, the COTS
product is inappropriate for the application envisioned
and encouraging reports of good performance are
irrelevant. Consequently, product experience is ranked
tenth.

4.3.7 Acceptance Criterion A11—Error Reporting
Requirement

The choice of a COTS product only begins its odyssey
as part of a system important to safety. In the
Operations & Maintenance phase of the software life
cycle, complete information on errors must be made
available so that evaluations can be made and
appropriate subseguent actions taken. This information
must be maintained since the severity of past errors
may be determinable only in retrospect. While the
COT S software vendor is not responsible for error
reporting under 10 CFR Part 21, the existence of
vendor-supported defect databases is a positive factor.

12566 the definition of statistical validity.

17

Section 4. Proposed Acceptance Process

Rationale for ranking:

The error-reporting requirement follows experience
database in rank since future error reports may lead to
aretrospective re-evaluation of some reportsin the
experience database.

4.3.8 Acceptance Criterion A12—Additional V&V
Requirement

If, after reviewing a COTS product with respect to the
previous criteria, some questions remain unanswered,
additional validation may be required for the
application in question.

Rationale for ranking:

The additional V&V reguirement isranked last since
all previous criteria must have been satisfied to reach
this conclusion.

4.4 Detailed Acceptance Criteriafor
Category B

Detailed acceptance criteria for category B softwareis
listed below in Table 6.

4.4.1 Acceptance Criterion B5—Product Assurance

A subset of the rigorous category A product assurance
activitiesis appropriate for category B COTS products.
The COTS software vendor should have documented
policies and proceduresin place that meet the
requirements stated in Table 6, item B5. Interface
analysis of category A products or systems has already
limited the extent to which category B products can
affect category A systems.

4.4.2 Acceptance Criterion B6—Product
Documentation

Provision of appropriate documentation will facilitate
the appraisal process, but recourse to design factorsis
acceptable to a greater extent than with category A
products. Note that this still requires justification.

4.4.3 Acceptance Criterion B7—Product Safety
Requirements

Category B safety requirementstypically consist of an
operator assistance function and automatic control that
prevents excursions into operating regimes that require
safety functions provided by category A systems. In
the U.S., the NRC also permits category B systemsto
back up category A systemsin the event of rare
common-mode failures of those systems. Aswith
category A COTS products, product assurance and
documentation are necessary before product functions
are known with sufficient certainty to determineif the
COTS product fulfills its expected safety functions.

Section 4. Proposed Acceptance Process

Table 6. Category B COTS Acceptance Criteria

BS

A-5, entries 3 through 7 for V&V criteria.

The COTS product shall have been developed under a quality assurance plan and a systematic
software development process. See Table A-3, entries 5 through 10 for SQA criteria. See Table

B6
documentation.

Documentation shall demonstrate Criterion B5. See Table A-7 for minimum required

B7

It shall be demonstrated that the COTS product will fulfill its safety functions as identified in
Criterion 2 (Table 4), and that its reliability is sufficiently high that it does not present a high
frequency of challengesto category A systems.

B8

The COTS product shall be consistent with system safety requirements.

B9

traceability and change control.

The COTS product shall have operated satisfactorily in similar applications. The version and
release of reported experience may not be identical to the proposed COTS product, but a
consistent configuration management program and well-managed update program provide

B10

option.

Error reporting, tracking, and resolution shall be consistent and correctly attributable to version
and release, and procedures and incentives are in place that ensure demonstrated compliance
during thefirst year after aversionisreleased. The version and rel ease proposed have no major
unresolved problems. A current bug list shall be available to COTS purchasers as a support

4.4.4 Acceptance Criterion B8&—System Safety

Equipment and software of category B is allowed more
latitude so that it can achieve significantly greater
function. Consequently, the COTS product should be
consistent with system safety requirements. This means
that the product may not necessarily take a safe action
during a system excursion, but it should not cause a
system excursion when operating as specified. Without
product assurance, this cannot be determined with
sufficient certainty.

4.4.5 Acceptance Criterion B—Experience
Database

If the foregoing criteria are violated, the COTS product
isinappropriate for the intended application and
operational experienceisirrelevant. Provided that the
previous criteria are satisfied, relaxed statistical
validity requirements, such as variations in usage,
environment, configuration, and confidence limits, are
acceptable. These relaxations should be justified based
on expected increase in risk.

4.4.6 Acceptance Criterion B10—Error Reporting
Requirement

The error reporting requirements, which are relaxed
from category A, are appropriate for good-quality,
well-supported, commercial-grade software products.
Typically, such products experience a significant
reduction in error reports after the initial period of free
software support service terminates.

18

4.5 Detailed Acceptance Criteriafor
Category C

Detailed acceptance criteria for category C softwareis
listed below in Table 7.

4.5.1 Acceptance Criterion C5—Product Assurance

Product assurance activities are limited to determining
that good software engineering practices were followed
and that crucial V&V was performed. The term “good
software engineering practice” is used to mean that
standards for software devel opment are used
systematically, that configuration management is
effectively employed, and that software devel opment
practices are defined, documented, and implemented. It
must encompass the documentation and V&V referred
toby Table 7, C5.

4.5.2 Acceptance Criterion C6—Product
Documentation

The required documentation is limited, and missing
documentation may be reconstructed or compensated
in part by design factor assessment. Product
documentation, while not required to be compl ete,
should be consistent with the intended application. The
product documentation should at least describe product
features, and it may cover several versions of the
product.

4.5.3 Acceptance Criterion C7—Product Safety
Requirements

The ability of the COTS product to perform its
(limited) safety functions should be demonstrated. In

view of the possibly limited product documentation,
testing may be required to demonstrate this criterion.
Information on specific considerations for testing
COTS software can be found in Scott and Lawrence,
1995 (included as Appendix B).

4.5.4 Acceptance Criterion C8—System Safety

The lack of adverse effect on and coordination with
other system safety functions should be demonstrated.
Since this demonstration depends upon knowing
product attributes, product assurance to the extent that
attributes are known is a prerequisite.

Section 4. Proposed Acceptance Process

4.5.5 Acceptance Criterion C9—Experience
Database

Experience with product operation isirrelevant unless
the previous criteria are satisfied. Relaxed reliability
constraints allow reliable operation in the proposed
application to serve as an experience base, although
other applications may have experienced difficulties.

4.5.6 Acceptance Criterion C10—Error Reporting
Requirement

Error reporting requirements, since they concern the
future, are ranked last as an acceptance criterion. An
error reporting scheme managed by the dedicator and
covering only applications known to the dedicator is
sufficient for this category.

Table7. Category C COTS Acceptance Criteria

C5

have been performed.

The COTS product shall have been developed according to good software engineering
practices. Minimum documentation, such asin Table A-13, shall be available or
reconstructable. Minimum V&V tasks, asin Table A-12, entries 2, 4, 8, 9, and 1922, shall

C6
be available for inspection.

Minimum documentation described in Criterion C5, including V&V task documentation, shall

Cc7

The COTS product may enhance safety by improving surveillance, improving operators’ grasp
of plant conditions, assisting in maintenance activities, reducing demands on category A or B
systems, monitoring or reducing the effects of radiation releases, or similar purposes. The
product’ s performance of itsintended effect shall be verified.

C8

It shall be demonstrated that the COTS product cannot adversely affect the safety functions of
category A or B systems or software and that it will not seriously mislead operators.

Cc9
application.

The COTS product must be shown to operate without serious malfunction in the instant

C10

An error reporting scheme shall be planned or in place that tracks malfunctions of this COTS
product in applications controlled by this applicant. Documentation and records retention allow
error histories of 5 years or length of service, whichever is shorter.

19

Section 5. Conclusions

5.0 CONCLUSIONS

Based on guidance provided by IEC 1226, it is possible
to classify software for use in nuclear power plants.
Using this classification and guidance from current
standards, an acceptance process for COTS software
items can be defined to areasonable level of detail.
This processis based on apreliminary set of criteria
applying to all classifications, coupled with a detailed
set of criteriathat are relaxed as the importance to
safety of the COTS software item decreases.

Acceptance criteriafor COTS products are easily
ranked by the dependence of some criteria on the
information produced by meeting other criteria. COTS
acceptance criteriafal into rank order because of the
data dependencies mentioned in earlier discussion.
Thisrank ordering is not necessarily the same as would
be used by a software developer to select a COTS
product; rather, it represents an order in which a
regulatory agency would expect a safety basis to be
constructed.

Review of standards from multiple sources reveals that
| EC standards provide the risk-based approach and
extradetail on which the pro formalEEE and SO
standards are implicitly based, but never address
directly. Apparently, diversity isa useful concept even
when applied to standards activities, as no single group
of standards was adequate to address the COTS
acceptability problem.

Based on the analyses supporting this report, it appears
that the use of COTS software in the safety systems of
nuclear power plants will be limited to well-defined
conditions and to COT S software products for which

21

the acceptability of the product can be clearly
established. Acceptability can be established through a
combination of (1) examination of the product and
records of its development indicating that a complete
and rigorous software engineering process was applied,
(2) sufficient evidence of satisfactory operational
experience and error reporting history, (3) additional
testing, and (4) vendor assessment as necessary. The
development of such COTS software items will
probably require developer knowledge that the product
will be used in systems with medium to high risks, as
well as the use of software processes that have been
designed to produce high-integrity software. Such
software developers will be generally aware of the
types of hazards associated with the systemsin which
their products will be used, and those hazards will have
been considered in their designs.

If generic, class-of-service commercial-grade item
dedications are possible under the Commission’s
regulations, the dedicator is responsible for resolving
generic acceptability questions, setting criteriafor
application of the dedicated item, resolving defect
reporting responsibilities, and defining acceptable
design and design verification methods for the
application of the item to specific nuclear power plant
safety problems. The designer applying such aclass-
of-service item is still responsible for resolving specific
safety questions, using the item within the terms and
conditions of the dedication, and performing such work
under the requirements of 10 CFR Part 50, Appendix
B, or the applicable licensing basis.

References

REFERENCES

Gallagher, John, (ed.), “ Discussions Related to COTS Obtained from Expert Peer Review Meeting on High Integrity
Software for MPPs Conducted by MITRE for NRC Research.” May 24-26, 1994.

Lawrence, J. Dennis, Warren L. Persons, G. Gary Preckshot, and John Gallagher, “Evaluating Software for Safety
Systemsin Nuclear Power Plants.” Submitted to 9th Annual Conference on Computer Assurance, Gaithersburg,
MD, June 27-30, 1994. UCRL-JC-116038, Rev. 1, Lawrence Livermore National Laboratory, 1994.

Lawrence, J. D., and G. G. Preckshat, “Design Factors for Safety-Critical Software.” Lawrence Livermore National
Laboratory, NUREG/CR-6294, December 1994.

Scott, J. A., and J. D. Lawrence, “Testing Existing Software for Safety-Related Applications,” Lawrence Livermore
National Laboratory, UCRL-ID-117224, September 1995.

U.S. Nuclear Regulatory Commission, “Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess
Plant and Environs Conditions During and Following an Accident.” In Regulatory Guide 1.97, Rev. 3, May
1983.

Other Applicable Documents:

“Guidelines for the Application of 1SO 9000-1 to the Development, Supply, and Maintenance of Software.”
International Organization for Standardization (1SO), 1SO 9000-3, 1987.

“Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the Nuclear
Industry.” ANSI/ANS-10.4, May 13, 1987.

“|EEE Standard for Software Quality Assurance Plans.” IEEE 730 (Now 730.1), August 17, 1989.
“|EEE Guide for Software Quality Assurance Planning.” IEEE 983 (Draft 730.2), Draft 4, October 1992.
“|EEE Standard for Software Configuration Management Plans.” |EEE 828, June 23, 1983.

“|1EEE Guide to Software Configuration Management.” |EEE 1042, September 10, 1987.

“|EEE Standard for Software Verification and Validation Plans.” ANSI/IEEE 1012, September 18, 1986.

“|EEE Standard Criteriafor Digital Computers in Safety Systems of Nuclear Power Generating Stations.” 1EEE-7-
4.3.2-1993.

“Programmed Digital Computers Important to Safety for Nuclear Power Stations.” |EC 987, First Edition, 1989.
“Software for Computersin the Safety Systems of Nuclear Power Stations.” |EC 880,13 First Edition, 1986.

Software for Computersin the Safety Systems of Nuclear Power Stations, First Supplement to |EC 880 (Draft), Draft
supplied by member of SC45A.

“The Classification of Instrumentation and Control Systems Important to Safety for Nuclear Power Plants.” IEC
1226, February 6, 1993.

Bcors products are called pre-existing software products (PESPs) in IEC publications.

23

APPENDIX A—PRELIMINARY LIST OF FACTORS

A preliminary list of acceptance criteriafor COTS products was identified from

|EEE 730 (now 730.1) SQA Plans

|EEE 983 (now 730.2 draft) SQA Plan Guidance

| EEE 828 Software Configuration Management Plans
|EEE 1042 SCM Plan Guidance

I SO 9000 as applied to software.
Subsequently, the limited scope of these standards was widened by including

* ANSI/ANS-10.4-1987—Guidelines for the verification and validation of scientific and engineering
computer programs for the Nuclear Industry

 ANSI/IEEE 1012-1986—Software Verification & Validation Plans.

With the exception of ANSI/ANS-10.4-1987, none of these standards takes significant note of existing
software. Consequently, appropriate acceptance criteria can only be inferred from those regquirements stated
for software developed under purview of the standards. A general requirement present in each standard—that
software be devel oped under the aegis of that particular standard—isimpractical for most COTS products. It
would be a happy finding indeed to discover well-done documentation and complete records ready for review.

A set of potential COTS acceptance criteria, or at least subjects to investigate, are listed in the following
tables. The tables are organized from the general to the particular. The general table points to particular
tables of additional criteriato be investigated if the general criterionistrue.

Table A-1. Failure Consequence Criteria

1 Are conseguences of failure unacceptable? SeeTable A-2

2 Are consequences of failure acceptable? Terminate

Table A-2. Plan Existence Criteria

1 An SQA plan and documentation exist See Table A-3
2 A configuration management plan exists See Table A-4
3 A software V&V plan exists See Table A-5
4 Some of the above do not exist See Table A-6

25

Appendix A

Table A-3. SQA Criteria

1 Does the SQA plan cover the minimum required subjectsin the Format and subject matter is
required format? standard-dependent, but most
standards specify similar
approaches
See |IEEE 730.1
2 Does the plan describe responsibilities, authority, and relations IEEE 730.1
between SQA units and software development units?

3 Is minimum documentation available? See Table A-7 for required
documentation. See Table A-10
for optional documentation.

4 Were the minimum SQA reviews and audits performed? See Table A-8 for minimum
required reviews and audits

5 Are standards, practices, conventions, and metrics that were used, See Table A-11 for suggested

described? areas of standardization

6 Were procedures for problem reporting, tracking, and resolving |IEEE 730.1

described?
Problems documented & not forgotten IEEE P730.2
Problem reports validated |IEEE P730.2
Feedback to developer & user IEEE P730.2
Data collected for metrics & SQA |IEEE P730.2

7 Were configuration management practices followed? See Table A-4

8 Were V&V tasks performed? See Table A-5

9 Did other software suppliers contribute to the product? See Table A-9. “The supplier is
responsible for the validation of
subcontracted work.”

SO 9000-3

10 | What records were generated, maintained, and retained? IEEE 730.1

11 | What methods or procedures were used to identify, assess, monitor, IEEE 730.1

and control risk during development of the COTS product?

26

Appendix A

Table A-4. Software Configuration Management Criteria

Does the configuration management plan cover the minimum
required subjects in the required format?

Format and subject matter is
standard-dependent, but most
standards specify similar
approaches.

See |EEE 828

Does the plan describe responsibilities, authority, and relations
between configuration management units and software devel opment
units?

|EEE 828

At least one configuration control board (CCB) is required. Does the
plan describe the duties and responsibilities of the CCB and relations
between the CCB, SQA, and software developers? e.g.,

Authority & responsibility

Role

Personnel

How appointed

Relation of developers & users

|EEE 828

Does the configuration management operation provide the following
reguired functions?

Configuration ID (baselines)

Configuration control

Configuration status accounting & reporting
Configuration audits & reviews

|EEE 828

Configuration management is founded upon the establishment of
“configuration baselines” for each version of each product. Is each
product or version uniquely identified and “ baselined” ?

|EEE 828

Isthe level of authority required for change (i.e., change control)
described? Appropriate subjects include:

Change approval routing lists

Library control

Access control

R/w protection

Member protection

Member identification

Archive maintenance

Change history

Disaster recovery

Authority of each CCB over listed configuration items

|EEE 828

Does status accounting include

Data collection

Identified reports

Problem investigation authority
Maintaining and reporting
Status of specifications

Status of changes

Status of product versions
Status of software updates
Status of client-furnished items

|EEE 828

27

Appendix A

Table A-4. Software Configuration Management Criteria (cont.)

8 Are suppliers of software products (e.g., COTS) under control? For |EEE 828 and |EEE 1042. SO
each supplier. . . 9000-3
Isthe SCM capability known?
How is SCM performance monitored?
For each product...
Isthe version in use archived?
Istheversion ID’d & baselined?
Is the product under change control ?
Are product interfaces under control ?
Are suppliers CM audits “visible”?
Isthere valid problem tracking?
Regarding supplier records. . .
What records are kept?
Can reviewers obtain access to them?
How good are they?
What security does the supplier have?
9 Are the records to be maintained identified and are there retention |EEE 828
periods specified for each type of record?
10 | What additional policies and directives govern the configuration See Table A-14 for alist of
management? typical policies and directives.
Table A-5. SoftwareV&V Criteria
1 Doesthe V&V plan cover the minimum required subjectsin the Format and subject matter is
required format? standard-dependent, but most
standards specify similar
approaches.
See |IEEE 1012
2 Isthe organizational structure of the V&V function described, |IEEE 1012
including the independence (or lack thereof) of the V&V
organi zation from the software devel opment organization?
3 Have the minimum required V&V tasks been accomplished? See Table A-12 for minimum
tasks
4 Doesthe V&V function detect errors as early in the development |IEEE 1012
process as possible?
5 Can software changes and their consegquences be assessed quickly? |EEE 1012
6 Are V&V functions coordinated with the software development life | IEEE 1012
cycle?
7 Are significant portions of V&V datamissing? See Table A-6

28

Appendix A

Table A-6. Actionsto Take When DataisMissing

1 Can missing data be reconstructed from other available data? Reconstruct data (see Table A-
13) and proceed to Table A-5.
ANSI/ANS-10.4

2 Can missing data be reverse-engineered from existing software Reverse-engineer data (see

products? Table A-13) and proceed to

Table A-5.
ANSI/ANS-10.4

3 Is recovered data and/or usage experience and configuration control | See Table A-13 for minimum

insufficient to justify intended usage? data. If insufficient, terminate

with prejudice.
ANSI/ANS-10.4 and | EEE 828

4 Is sufficient test data available to support intended usage? Reconstruct tests and proceed to
Table A-5.
ANSI/ANS-10.4

Table A-7. Minimum SQA Documentation

1 Software Quality Assurance Plan IEEE 730.1

2 Software Requirements Specification IEEE 730.1

3 Software Design Description IEEE 730.1

4 Software V&V Plan |EEE 730.1

5 Software V&V Report |EEE 730.1

6 User Documentation (Manuals) IEEE 730.1

7 Software Configuration Management Plan IEEE 730.1

Table A-8. Minimum Required SQA Reviews and Audits

1 Software Requirements Review IEEE 730.1

2 Preliminary Design Review IEEE 730.1

3 Conceptual Design Review IEEE 730.1

4 Software V&V Plan Review |EEE 730.1

5 Functional Audits (e.g., validations) IEEE 730.1

6 Physical Audits (e.g., physical deliverables) IEEE 730.1

7 In-Process Audits (e.g., life cycle stage verification audits) |EEE 730.1

8 Managerial Reviews IEEE 730.1

29

Appendix A

Table A-9. SQA, SCM, and V&V for Other Software Suppliers

1 SQA for a purchased product shall meet the same requirementsasif | |IEEE 730.1
it were developed in-house. For to-be-developed COTS, the other
software supplier shall perform the requirements of IEEE 730.1. For
previously developed COTS, the “methods used to assure the
suitability of the product for (its intended) use” shall be described.

“Software suppliers’ shall select subcontractors on the basis of their | 1SO 9000-3
ability to meet subcontract requirements, including quality
reguirements.

2 SCM for a purchased product shall meet the same requirementsasif | |EEE 828. See also Table A-4,
it were developed in-house. As aminimum, the other software line8
supplier isrequired to implement the provisions of |EEE 828.

3 V&YV for COTSis not addressed, except indirectly through |IEEE See Table A-3, line 8, and Table
730.1 through its provision requiring |EEE 730.1 compliance of the | A-6
software supplier, or through ANSI/ANS-10.4 through its provisions
for reconstruction of missing data.

Table A-10. Suggested Additional Documentation

1 Software Development Plan IEEE 730.1

2 Standards & Procedures Manual IEEE 730.1

3 Software Project Management Plan IEEE 730.1

4 Software Maintenance Manua |EEE 730.1

5 User Requirements Specification IEEE 730.1

6 External Interfaces Specification IEEE 730.1

7 Internal Interfaces Specification IEEE 730.1

8 Operations Manual IEEE 730.1

9 Installation Manual IEEE 730.1

10 | Training Manual IEEE 730.1

11 | Training Plan (for SQA personnel) IEEE 730.1

12 | Software Metrics Plan IEEE 730.1

13 | Software Security Plan IEEE 730.1

Table A-11. Suggested Areas of Standar dization

1 Documentation Standards IEEE P730.2

2 Logical Structure Standards |IEEE P730.2

3 Coding Standards |IEEE P730.2

4 Comment Standards IEEE P730.2

5 Testing Standards |IEEE P730.2

6 SQA Product & Process Metrics |IEEE P730.2

30

Table A-12. Minimum V&V Tasks

Appendix A

SVVP |EEE 730.1 and |EEE 1012
Requirements (e.g., SRS) Analysis |IEEE 1012
Existence ANSI/ANS-10.4
Clarity ANSI/ANS-10.4
Consistency ANSI/ANS-10.4
Completeness ANSI/ANS-10.4
All functions included
Environment specified
Inputs & outputs specified
Standards used specified
Correctness ANSI/ANS-10.4
Feasibility ANSI/ANS-10.4
Testability ANSI/ANS-10.4
3 SRS Traceability Analysis |IEEE 1012 & ANSI/ANS-10.4
4 Interface Requirements Analysis IEEE 1012 & ANSI/ANS-10.4
5 Test Plan Generation IEEE 1012 & ANSI/ANS-10.4
6 Acceptance Test Plan Generation |IEEE 1012
7 Design Analysis |EEE 1012
Completeness ANSI/ANS-10.4
Correctness ANSI/ANS-10.4
Consistency ANSI/ANS-10.4
Clearness ANSI/ANS-10.4
Feasibility ANSI/ANS-10.4
8 Design Traceability Analysis IEEE 1012 & ANSI/ANS-10.4
9 Interface Design Analysis |IEEE 1012
10 | Unit Test Plan Generation IEEE 1012 & ANSI/ANS-10.4
11 | Integration Test Plan Generation IEEE 1012 & ANSI/ANS-10.4
12 | Test Designs |EEE 1012
Code test drivers ANSI/ANS-10.4
13 | Source Code Analysis |IEEE 1012
Conformance to standards ANSI/ANS-10.4
Adeguate comments ANSI/ANS-10.4
Clear and understandable ANSI/ANS-10.4
Consistent with design ANSI/ANS-10.4
Strong typing ANSI/ANS-10.4
Error-checking ANSI/ANS-10.4
14 | Source Code Traceability |IEEE 1012
15 | Interface Code Analysis |IEEE 1012
Well-controlled software interfaces ANSI/ANS-10.4
16 Documentation Evaluation IEEE 1012
17 | Test Procedure Generation |IEEE 1012 & ANSI/ANS-10.4

Unit Test
Integration Test
System Test
Acceptance Test

31

Appendix A

Table A-12. Minimum V&V Tasks (cont.)

18 | Unit Test Execution |EEE 1012
Unit test results ANSI/ANS-10.4
19 | Integration Test Execution |IEEE 1012
Size ANSI/ANS-10.4
Timing ANSI/ANS-10.4
Interface control ANSI/ANS-10.4
Interactions verified ANSI/ANS-10.4
Build control and documentation ANSI/ANS-10.4
20 | System Test Execution |IEEE 1012
Each requirement tested? ANSI/ANS-10.4
Each requirement met? ANSI/ANS-10.4
All test cases executed and checked? ANSI/ANS-10.4
21 | Acceptance Test Execution IEEE 1012
22 | Ingallation Configuration Audit |IEEE 1012
Deliverables identified ANSI/ANS-10.4
Can delivered program be rebuilt? ANSI/ANS-10.4
Do test cases still work? ANSI/ANS-10.4
23 | V&V Fina Report |EEE 1012
24 | Basdline Change Assessment (as required) |EEE 1012
25 | Review Support—participation in software and management |IEEE 1012
reviews
Table A-13. Minimum Documentation Needed for a Posteriori V&V
1 Problem statement ANSI/ANS-10.4
2 Requirements specification ANSI/ANS-10.4
3 Design specification ANSI/ANS-10.4
4 Test plan and test results ANSI/ANS-10.4

32

Appendix A

Table A-14. Typical Paliciesand Directives of a Configuration M anagement Oper ation

1 Definition of software levels or classes |EEE 828
2 Naming conventions |EEE 828
3 Version ID conventions |EEE 828
4 Product ID policy |EEE 828
5 IDs of specifications, test plans, manuals & documents |EEE 828
6 Media ID and file management |EEE 828
7 Documentation release process |EEE 828
8 Software release to general library |EEE 828
9 Problem reports, change requests and orders |EEE 828
10 | Structure & operation of CCBs |EEE 828
11 | Acceptance or release of software products |EEE 828
12 | Operating rulesfor the software library |EEE 828
13 | Audit policy |EEE 828
14 | Methodsfor CCB assessment of change impact |EEE 828
15 | Leve of testing or assurance required before an item is accepted for | IEEE 828
CM—may be related to software classes
16 | Level of SQA or V&YV required before an item is accepted for |EEE 828

CM—may be related to software classes

33

Appendix A

Appendix B: Testing Existing Software
for Safety-Related Applications

Prepared by
John A. Scott
J. Dennis L awrence

L awrence Livermore National L abor atory
7000 East Avenue
Livermore, CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

Appendix B

36

Appendix B

ABSTRACT

Theincreasing use of commercia off-the-shelf (COTS) software productsin digital safety-critical applicationsis
raising concerns about the safety, reliability, and quality of these products. One of the factorsinvolved in addressing
these concernsis product testing. A tester’s knowledge of the software product will vary, depending on the
information available from the product vendor. In some cases, complete source listings, program structures, and
other information from the software development may be available. In other cases, only the complete
hardware/software package may exist, with the tester having no knowledge of the internal structure of the software.

The type of testing that can be used will depend on the information available to the tester. This report describes six
different types of testing, which differ in the information used to create the tests, the results that may be obtained,
and the limitations of the test types. An Annex contains background information on types of faults encountered in
testing, and a Glossary of pertinent terms s also included.

37

Appendix B

38

Appendix B

CONTENTS

O 1 o [Tox 4 o o OSSPSR 45
LLL. PUIPOSE. ...ttt ettt e b et b b e bR e R e A bt e e e R e R Se e s e s e e e e R e R e AR e R e R R e R e nr e n e nenn e e 45
1.2. Scope, ASSUMPLIONS 8N LIMITAIIONS.coiiiiiieirieeriee et 45
1.3, REPOI OrQaANIZAIION........civeueiteeeteeete ettt sttt se et et b et bt bt b et b e se e b seeb e s e ebe s e eb e s b e bt sb et s b e st s be e et e et 45
O I T g« o USRNSSR 46
1.5, General COmMMENES ON TESING.ccuereetereetereeiereetereete st ettt sttt e st se b et e e ebe b ebe st e bt sb et sbe st sbe e ebe e ebens 46
1.5.1. Testing Goals and SOftware QUAITLIES.........c.ooveuiriririiirieirieri e 46
1.5.2. SOfIWEAIE ODJECESc.vuieeiirteiiet ettt bbb bt bbb bt b et e et e et b b e b e s s 46
LT T = = £ 49
154, The TeStNG LIfE CYCIE ..ot 49

T = U ST g (0 N = T 10 = TS 51
L.6.1 DEFINITIONS.eieieteite ittt ettt sttt et e et e e et e s e e neeaeebesaesaeebeebeseeseeeeneeseenseneeneeneenens 51

1.6.2 Relationship of Faults, Errors, and FallUreS...........ccoi oo 51

1.7. Selection of Testing Strategies and TECANIQUESccivieriiirieiriiiieeeseet e 52
1.7.1. Context for Selecting TeStNG SIrAEQIES.........cvruririeirieerert et 52
1.7.2. Considerationsfor Selecting Testing SIrAtEQIEScccvveeririririeirieereeeree e 52

2. SHAtiC SOUCE COUB ANAIYSIS ..oeviieiteieitestestestesteee et e e et ssestestestessestetesaessansesse e esseseeseaseesessesaestentesaessentessenseneenenaen 59
2.1. Purpose of Static SoUrce Code ANBIYSIS.......ccccciiiiiiiie ettt st saesa e et ne e e eneens 59
2.2. Benefitsand Limitations of Static Source Code ANalYSIS........coeveieiieieeieesece st 59
2.2.0. BENEFILS 1.ttt R et 59
2.2.2. LIMITAHONS ..vviuietetiieseseet ettt s e s b bbbt e bbb n et nnnn s 59

2.3. Information Required to Perform Static Source Code ANAlYSIS.......ccccoveeeieiriesecese e 60
2.4. Methods of Performing Static Source Code ANAIYSIS........ccveeiieiierieieeieeeeeese et eens 60
2.4.1. Static Analysis Planning and REQUITEIMENEScccociieiiiieieseseeeeee et 60
2.4.2. Analysis Design and ImpIemMENtaiioncccovveviiirieieseseseseeeeee et st se e e ens 60
2.4.3. Execution and Evaluation of the ANGIYSES..........ccceieieieieeeceee e 61

2.5. Discussion of Static SOUrCE COUE ANAIYSIS......ccouieiiiereiisese e steste e se e e et sresrestesrestete e e seeseeneeneens 61
Y0 R 1 0 oo 1o o RS 61
W A B L= T @ o= ot (o TS 63
2.5.3. Automated StrUCIUral ANAIYSIS ..c.vcveeeicieeceee sttt sa et re st sr et et seesa e s e e e e e 64
2.5.4. Other MEINOUS........coiiieieiiisieteit et a bbb b e n e 64

3. SHUCKUIAl TESHING ...ttt sttt ettt ettt e bt e bbb st bt b et b et b e e b re e b e e e b e e e e bt e e eb e eb e bt e b et s be e eb et e b e b 67
3.1, PUrPOSE Of SEIUCEUFEl TESEING .. c.ecveeetereeuerieierteiestee ettt ettt se b e bt e bt se ettt sb et b e e b e seebeseebeseebeseene e 67
3.2. Benefitsand Limitations Of SIrUCLUral TESHINGcoveeruiiriiieeree e 67
32,1 BENEFIES ettt £ bR £ bRt A b e ARt e R b ene et ebene e eebenan 67

R A I | 41T o SRS 67

3.3. Information Required to Perform Structural TESHNGcoerveeereerieerieereeeseee e 67
3.4. Methods of Performing StruCtural TESEINGeocruererueriririeiriees sttt 67
3.4.1. Test Planning and TeSt REQUITEIMENTS.........ccciueiiieiirieiniereeie sttt sttt 67
3.4.2. Test Design and Test IMplementation...........cocoereieriineninereee e 68
3.4.3. Test Execution and TeSt EVAIUBLION..........ccooiiiiiiiieresiese et 68

3.5. DiscuSSION Of SEUCTUFEI TESING ...c.veveeeeireetirieierieerieesi ettt ne e 69
3.5. 1. CONLIOl FIOWGIEPNS......ccviiiteieetereete ettt ettt bbb e bbbt bt bbb nb 69
3.5.2. Control FIOW (Path) TESHINGccveerieerieiiieesiee sttt sttt 70
3.5.3. LOOP TESING ..ttt sttt ettt sttt b et b et b e st b e b e se bt s e bbbt e bbbt bbb b 71
3.5.4. Data FIOW TESMNG ...cviueiteiitereetereeie ettt et st b e e b e e b e bbbt bbb et bt st e b 71

A g Tox 0] 7= = o ST 75
4.1, PUrpoSe Of FUNCHIONG TESHING ...veveieieieeeictiie ettt s te st et sa e e et aesaesbesbeseesaebentesaensenaennennenens 75

39

Appendix B

4.2. Benefits and Limitations of FUNCLIONEl TESLING.......cceiriiiriiiriririeric e 75
2.1, BENEFILS 1ot bbb b b e b e R bbbt bbbt 75

A.2.2. LIMITBIIONS ..ottt bbbt b e b e bt e bt bbb e bt b et b et et b e e b s 75

4.3. Information Required to Perform FUNCLioNal TESHING.......cccoeirirrirnenre e 75

4.4. Methods of Performing FUNCLIONAl TESHINGcorevirieiriiirieriereese e 75
4.4.1. Test Planning and TeSt REQUITEIMENTS.........ccoviiiieiirieerereeie sttt sttt sttt 75

4.4.2. Test Design and Test IMplementation ... 76

4.4.3. Test Execution and Test EVAIUBLION............coriiriririiiriesees et 76

4.5. Discussion Of FUNCHIONA TESHING.coueerueertirietirietirieieriee sttt sttt bbb nes 7
A.5.1. TranSACHON TESHING ...veeeverertereeteriete sttt sttt st b e st b e st b e s b e bbbttt s b et bt st e sttt 7

A.5.2. DOMAIN TESING ..c.veuerteeeterietereeteseete sttt sttt sttt sttt st se b s e e b se e b e s b e bt s b e bt s b e st s be st s be e be e be e ebens 78

A.5.3. SYNEAX TESHING ...eiveueiteieterieie sttt sttt sttt b e et se b s b s e b s bbb e bbbt bt b et st e e be et 79

454, LOGIC-BASEA TESHING ..ueoveeiteiieteriete sttt sttt sttt s sttt sttt 80

TS = (= = o [OOSR 81

S = L o= I 11 g o OO PP USROS 83
5.1. PUrpOSe Of SEatiStiCal TESHING ... cvertereeieeeieeeieriere sttt sttt be bbbt e e b e b e e e e e e e ene 83

5.2. Benefitsand Limitations of StatiStiCal TESHNGcoveivirtireriirieie et e 83
5.2.0. BENEFILS .ttt bbb e R bR e ekt e b bt e e b 83

5.2.2. LIMITALIONSveueiteeereseetese ettt b e b se b e b se st et s et s b e e R et e R e neereneerennenennene e 83

5.3. Information Required to Perform StatistiCal TESHNG.......coveere e 83

5.4. Methods of Performing StatistiCal TESHNGcieiiririrererese e s 84
5.4.1. Test Planning and Test REQUITEIMENES..........co.oiiiiiiiire et s e 84

5.4.2. Test Design and Test IMPIemMENtaLiON.........c.coiiirirereiierieie et s e e 84

5.4.3. Test Execution and TESt EVAIUBLION..........cccoiiieriiirereneerese st s en e 86

5.5. DiSCuSSION Of StALISHCAl TOSHING -...eeueeuieueeiirieriietesie sttt sttt be et besb e b e bt e e s e b e e e e e e e e 86

S (= == 1] o o OSSOSO 89
B.1. PUIPOSE Of SErESS TESHING ...cveeeteeetereeterieierieie st sttt sttt st ek st e bbbt e et e e b et b e e b e se et e seebeseebeseebeneas 89

6.2. Benefitsand Limitations Of SIrESS TESHINGcvvuiiriiiriiiriree e bbb 89
B.2. 1. BENEFITS .ttt b et bbb 89

B.2.2. LIMITALIONS ...ttt b e e b e e b ekt e e b et b et b et b et e b e st ebeseebese et e naebe e 89

6.3. Information Required to Perform SIrESS TESHINGcovevereereririeriee ettt s 89

6.4. Methods of Performing StreSS TESHINGccieerirereririeireriserie sttt bbbt 90
6.4.1. Test Planning and TeSt REQUITEMENTS........ciuiiiiririerirerieesie et 90

6.4.2. Test Design and Test IMPlemENtation...........coviiirrerieirer e 90

6.4.3. Test Execution and TESt EVAIULION..........cccoiiriiriiiriete ettt st s s 91

6.5. DiSCUSSION Of SEFESS TESLINGcuvvereerireetirieierieierieesie sttt sttt b etk b et b et bbbt 92

FA R e (=S Lo g I == 1] oo OO U PO PPUPT SRR 95
7.1. PUrpOSE Of REGIESSION TESLING.cvereeeeeeieeeteeiere sttt sttt et e et e e ae bt ebesbesbesb e beseesb et e e e e eneeneeneene 95

7.2. Benefitsand Limitations Of REgreSSiON TESLINGcoerverereirierie ettt st s 95
T.2.1. BENEFILS 1.ttt b ket e b bR bR e e bt e bt e e n b 95

7.2.2. LIMITAEIONS ...ttt r st r e e b e e bt e b se st et s et e b et e R e e e R e neereneerennebennene e 95

7.3. Information Required to Perform RegresSSioN TESHNGcoeiereerieieieeeerere st s 95
7.4. Methods of Performing RegreSSioN TESHINGcoccoiiirireriirierie ettt sb e st st sn e se e e 95
7.4.1. Test Planning and Test REQUITEIMENTS..........cooiiiiiiiene et s e 95

7.4.2. Test Design and Test IMPIemMENtatiON.........c.ccoeiirirereieeriee e e e 95

7.4.3. Test Execution and TESt EVAIUBLION..........cccoiiiereirireere s seenennene e 96

7.5. Discussion Of REQIESSION TESIINGcoiririreriietirie sttt i et be b b e bbb e s e b e e e e e e e e 96

8. REFEIEINCESecueteieteete ettt b b bt e bbbt bRt bR bR h e h e Rt ARt ARt R Rt R R e bR bttt a et ne s 97
ANNEX—TaX0NOMY Of SOfIWEAIE BUGS........coeeeeuirieeetiriere sttt sttt ettt aesbesae bt ebesbeseesbenbeseese e s ense e eneeneas 99
GlOSSANY ettt ettt bbbt b et h et e bt e e bt E bt A R e R R £ A e R £ R e RS E e e R £ e R e AR e ARt A e R e A e R e R Rt bt b b et enn 109

40

Table1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 1-6.
Table 1-7.
Table 3-1.
Table 5-1.
Table5-2.

Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 5-1.
Figure 6-1.

Appendix B

TABLES
Safety Impact of Software Qualities from a Regulator Viewpoint...........coceveireereieneienieiesee e 47
Testing Strategies Appropriate to Software QUAlIIEScccvvecieiereeicicee e 48
Test Strategies Appropriate for Software ODJECESooviiireiiee e 50
Expected Pattern of Testers and Software OBJECLS.........oovirrireree e 50
StrategieS USEH DY TESEISiiiieie ettt st sttt s e aeeae b e s besaesbesbesee st entese e eneenennes 50
Sample Prerequisites for and EXENt Of TESHING.......coeriiirireriereeieee et 53
Typical Testing Strategies for Investigating Software QUalIties ..o 55
Data Flow Testing Symbols and MEANINGScccviieieiieiiseseseeseesie e e esese e tesresae e stesaessesesaessenens 73
Required Number of Test Casesto Achieve Stated Levels of Failure Rate and Confidence.................... 85
Expected Test Duration as a Function of Test Case DUFationcccveererenerneneseneseseee e 85
FIGURES
Conceptual Platform for Automated SEatic ANAIYSISc.coveiiviiiereeree e 62
Software Development Activities, Products, and INSPECLIONSccccoerrirrinieinieenee e 63
Typical Test Station Components for Structural TESHNGccvvereereeririeeeeerere e 69
EXAMPIE OF @ PTOGIAMviiiieieeeeeeeeete et sttt se et eeseereetesaesbesbesae st e stetessensensensennenens 70
Flowgraph Corresponding to the Module in Figure 3-2..........c e 71
Examples of LOOPS iN FIOWGraPNS ..ottt et s 72
TESt CaseSiN LOOP TESIMNGveeeuieeierietirieitrie sttt b et b ettt 72
Control Flowgraph Augmented to SHOW Dat@a FIOWccoeiriiiriiiriee s 74
Typical Test Station Components for FUNCtional TESHING.......cccovieeirieriere e 7
Example of a Transaction FIOWGraph...........cccoiiiiii it sttt s 78
EXAMPIE OF DOMBINSceitiieieieeieee ettt se ettt e be b e s bt sbesbesbese e besbese e e e e e e eneeneas 79
Examples of Two-Dimensional Domains with Examples of Test ValUeSccooveviieneieneniecieeee 80
EXample Of @ SYNEAX GIaPNccccirieeirieiriere ettt bbb 80
Example Of @DeCISION TADIE ...c..ciiieiee bbb bbb 81
Example of a State Transition DIGGraMcccceeeieieieereresereeseesesreeesese s e sre st sae st steseesreseesseseeseesessesseens 82
Typical Test Station Components for StatistiCal TESHNGccevereereerieieeeeeees e e 86
Typical Test Station COMPONENTSccciirerereirterie ettt st sre e saesbesbesaesaesbesbeseenseseseeeeneeneeneens 91

41

Appendix B

42

Appendix B

ACKNOWLEDGMENT

The authors thank and acknowledge Professor Richard Hamlet for reviewing this report and providing helpful
insights and comments.

43

Appendix B

Appendix B

TESTING EXISTING SOFTWARE FOR
SAFETY-RELATED APPLICATIONS

1. INTRODUCTION

1.1. Purpose

Theincreasing use of commercial off-the-shelf
(COTS) software productsin digital safety-critical
applications is raising concerns about the safety,
reliability, and quality of these products. One of the
factorsinvolved in addressing these concernsis
product testing. A tester’s knowledge of the software
product will vary, depending on the information
available from the product vendor. In some cases,
complete source listings, program structures, and other
information from the software development may be
available. In other cases, only the complete
hardware/software package may exist, with the tester
having no knowledge of the internal structure of the
software.

The type of testing that can be used will depend on the
information available to the tester. This report
describes six different types of testing, which differ in
the information used to create the tests, the results that
may be obtained, and the limitations of the test types.
An annex contains background information on types of
faults encountered in testing, and a Glossary of
pertinent termsis also included.

1.2. Scope, Assumptionsand Limitations

This report specifically addresses testing of existing,
commercial off-the-shelf software for safety-related
applications and, therefore, makes no assumptions as to
the adequacy of the software process under which the
software was developed or of the capabilities of the
software developer. These and other questions must be
considered by whatever process determines the
acceptability of the COTS software product for a
particular use. Testing is only one aspect of an
acceptance process for a COTS software product.
Other aspects include a system design that carefully
allocates responsibilities to the computer system, a
hazard analysis of the system (including computer
hardware and software), an investigation of the
capabilities of the software developer, a mature
development process, and favorabl e experience data.
These aspects are discussed in the main report in this
NUREG/CR, and related information isfound in
Lawrence (1993), Lawrence and Preckshot (1994), and
Preckshot and Scott (1995). Results obtained from

45

applying testing strategies discussed in this report will,
therefore, be used in combination with data from the
other information sources used in the acceptance
process.

Thisreport provides an overview of key testing
techniques and their relationship to COTS software.
The quoted references should be consulted for more
detail. In particular, Beizer (1990) and Marick (1995)
provide detailed, practical information on carrying out
testing activities.

1.3. Report Organization

The body of the report consists of six sections,
numbered 2—7, which describe six different testing
strategies. Within each testing strategy, a number
specific testing techniques are described. The testing
strategies are:

e Static Source Code Analysis

e Structural Testing

e Functional Testing

e Statistical Testing

e StressTesting

¢ Regression Testing.

Each of these sectionsis organized in a similar fashion:
¢ Purpose of the testing strategy

¢ Benefitsand limitations of the testing strategy
e Information required to perform the tests

e Methods of performing the tests

e Discussion of the test techniques belonging to the
testing strategy.

The sections are meant to be read independently, so
some repetition of material occurs throughout sections
2-7.

An Annex has been included to provide additional
information regarding the types of faults discovered

Appendix B

during testing, aswell as a Glossary of software quality
terms.

1.4. Definitions

Several terms used in this report are defined here. The
Glossary provides a more complete listing of
applicable terminology.

* Commercial Off-the-Shelf (COTS) software.
COTS software is devel oped for general
commercial use and, as such, is usually developed
without knowledge of the unique requirements of
particular applications. The term COTS, as used
here, does not denote an acceptance process nor
does it have any connotations regarding the
availability of source code or development process
records.

e Operational Profile. The operational profile of a
program is the statistical distribution function of
the inputs which will be encountered by the
program under actual operating conditions.

* Oracle. Any (often automated) means of judging
the correctness of atest execution.14

» Software Object. The software module, package,
program, subsystem, or system which is being
tested.

* Testing. “(1)The process of operating a system or
component under specified conditions, observing
or recording the results, and making an evaluation
of some aspect of the system or component. (2)
The process of analyzing a software item to detect
the differences between existing and required
conditions (that is, bugs) and to evaluate the
features of the software items.” (IEEE 610.12-
1990) In thisreport, the word “testing” isused in
both meanings.

1.5. General Commentson Testing

This section contains brief comments on software
testing that apply generally to the remainder of the
report. Note that the tables of Section 1 should not be
read as absolutes, but as general guidance. In particular
cases, some connections indicated in the tables may not
be relevant, and some connections that are not
indicated in the tables may be important. Nevertheless,
in most cases, the tables provide general guidance for
testing safety-related COTS software.

14A more restrictive definition is given by Beizer (1990) who states,
“An oracleisany program, process, or body of datathat specifiesthe
expected outcome of a set of tests as applied to atested object. . .
The most common oracle is an input/outcome oracle—an oracle that
specifies the expected outcome for a specified input.” Thisis more
difficult to create and is not necessary to this report.

46

1.5.1. Testing Goals and Software Qualities

To be effective, testing should be directed at measuring
some quality of the software. The various testing
strategies address different sets of software qualities.
For this reason, a comprehensive testing program will
incorporate as many strategies as possible in an attempt
to assess the overall soundness of the software. Within
this context, special emphasis can be placed on those
strategies that are related to quality attributes of
particular concern.

Hetzel (1984) divides software qualitiesinto three sets:
external, internal, and future. External qualities
describe the functionality of the software; internal
qualities describe the engineering aspects of the
software; and future qualities describe the adaptability
of the software. Many possible software qualities have
been described in the software engineering literature. A
list of qualities collected by Hetzel (1984) and by
Charette (1989) has been arranged by the likely impact
of the qualities on safety in Table 1-1. Definitions of
these qualities are given in the Glossary.

The six different testing strategies are not equally
suited to al of the software qualities. Table 1-2
suggests which strategies to use for the qualities that
are of primary and secondary interest in safety-related
reactor applications. The table provides a cross
reference between software qualities and strategies
used to test for these qualities. These linkages can be
useful to both developers and evaluators of COTS
software. Regression testing attempts to ensure that
changes made to the software, either during
development or after installation, do not affect a
software object in unplanned areas. It consists of re-
execution of previoustesting and, therefore, addresses
the qualities previously demonstrated with other forms
of testing.

1.5.2. Software Objects

Software objects subject to testing range from
programming language statements to complete
systems, and the type and amount of testing will
generaly vary across this range. To provide some
consistency within this report, five classes of objects
are defined. In particular instances, some classes may
coalesce. For example, in the ssimplest case of a system
consisting of asingle module, all five classes are
compressed into one. Most classes will be distinct in
safety-critical systems.

Software object terminology is defined for
conventiona third-generation programming languages
such as Ada, C, C++, Pascal, and FORTRAN.
Extensions to fourth-generation languages and visual
programming environments should be straightforward.

Appendix B

Table1-1. Safety Impact of Software Qualities from a Regulator Viewpoint1®

Impact on Operational Safety
Primary Impact Secondary I mpact Little Impact
External (Functional) Accuracy User Friendliness
Quialities Acceptability
Availability
Completeness
Correctness
Interface Consistency
Performance
(Efficiency, Timing)
Preciseness
Reliability
Robustness
Security
Usability
Internal (Engineering) Integrity Clarity Accountability
Quialities Internal Consistency Interoperability Adaptability
Testability Simplicity Generality
Validity Understandability I nexpensiveness
Manageability
Modularity
Self-Descriptiveness
Structuredness
Uniformity
Future Qualities Accessihility
Augmentability
Convertibility
Extendibility
Maintainability
Modifiability
Portability
Reparability
Reusability
Serviceability

LONote that qualities associated with modifications that might be made in the operations phase have been listed in the “Little Impact” category
because an assumption is made here that, in typical safety-related reactor applications, changes will be infrequent. To the extent that such
software might be used in an environment with regularly changing reguirements, these qualities assume more importance. It should a so be noted
that, in some cases, listed qualities have essentially the same meaning but may have slightly different interpretations depending on the context.
Since they al appear in the literature, no attempt has been made to group them. They are, however, categorized consistently.

47

Appendix B

Table 1-2. Testing Strategies Appropriateto Software Qualities

Softwar e Quality Static Structural Functional Statistical Stress Testing
Analysis Testing Testing Testing

Acceptability X 0]

Accuracy O X X

Availability X X

Clarity X

Completeness X X 0]

Correctness X X X X

Integrity 0] X X

Interface Consistency X X

Internal Consistency X X @]

Interoperability X X

Performance (efficiency 0] X X

& timing)

Preciseness 0] X X

Reliability X

Robustness 0] X X

Security 0] X X

Simplicity X

Testability X

Understandability X

Usabhility X X

User Friendliness X

Validity X X

Regression Testing @] X @] X

X = Strategy should be used for the specified quality
O = Strategy may be used for the specified quality

* A moduleisanamed collection of programming

language statements. Alternate names are

subroutine, procedure, or unit.

* A packageisacollection of one or more modules
which relate to a common topic. Packages are a
key feature of object-oriented programming
languages such as Ada and C++. For example, a
set of modules that processes dates could be

combined into a calendar package. A set of

modul es that manages sensor information (read,
check status, convert data) could be combined into
a sensor device-driver package.

* A programisaset of one or more packages and
modules which can be executed on a computer.

48

Programs are created by means of alinker or
loader and can be stored in afile or PROM 16 for
future use.

A subsystem consists of one or more modules,
packages and programs which are devoted to one
or more related functions, or which must execute
together to achieve a desired task, or which
execute concurrently on the same processor.
Examplesinclude a set of programs which
performs various kinds of report production, and a
set of programs which reads and processes sensor

16 Programmable read-only memory.

data on one computer and sends the results to be
displayed on another computer.

* A systemisthe entire set of subsystems which
manages a compl ete application.

Table 1-3 shows a different perspective. It matches
different test strategies to different classes of software
objects. The checked entries show which testing
strategies are primarily recommended for each class of
object. Note that any strategy could apply to any class
of object under specific circumstances. The table
merely provides general guidance.

Objects are classified here according to structure, and
this classification is used throughout the report.
Another method of classification relatesto structural
complexity. This might yield a series such as batch
processing, interactive time-sharing, transaction
processing, real-time process control, and real time
vehicle control. However, thisreport is limited to real
time process control systems.

A further classification dimension involves the
interaction of processes and ranges from single process
systems to multiple-process shared-memory concurrent
systems. This dimension affects primarily the amount
of testing required and the difficulty of creating and
judging the tests. In particular, stresstesting is very
important as the amount of interaction increases.

1.5.3. Testers

Testing is frequently carried out by different categories
of personnel. A primary concern when safety isan
issue is independence of testing from development.1”

17 ndependent V&V is used when it is necessary to have an
impartial, objective analysis and test conducted of the
software/system. The notion is that difficult-to-discover errors which
may reside in the software due to assumptions or technical biases
inadvertently introduced by the development team would have a
higher probability of being detected by an impartial, objective V&V
team who would apply afresh viewpoint to the software. IV&V is
used for high-criticality software, which demands the integrity of
critical functions due to life-threatening consequences of failure,
unrecoverable mission completion (e.g., space probes), safety or
security compromises, financial loss, or unacceptable socia
consequences. |ndependence is defined by three parameters:
technical, managerial, and financial. The degree of independence of
the V&V effort is defined by the extent that each of the three
independence parametersis vested in the V&V organization. The
ideal IV&V contains al three independence parameters. Technical
independence requires that the IV&V team (organization or group)
utilize personnel who are not involved in the development of the
software. An effective IV&V team has personnel who have some
knowledge about the system or whose related experience and
engineering background gives them the ability to quickly learn the
system. In all instances, the IV&V team must formulate its own
understanding of the problem and how the proposed system is
solving the problem. This technica independence (“fresh
viewpoint”) is crucial to the IV&V team’s ability to detect the subtle
errors that escape detection by development testing and quality

49

Appendix B

During development, the software engineer who
develops code may be involved in some of the testing.
Some independence can be achieved by using other
software engineers from the devel oping organization.
Greater independence can be achieved if the customer
or an V&V organization performs testing activities. In
these cases, testing could be subcontracted. For
example, the customer might hire a company to carry
out testing on its behalf or it might do the testing itself.
When COTS software is to be tested by the customer,
itisunlikely that parties from the developing
organization will be involved in the testing effort, so
independence would generally be assured. In any case,
note that it is essential that the testers be well-qualified
and knowledgesable of the application.

Table 1-4 shows which categories of tester are most
likely to carry out testing on the different types of
software objects. Aswith the previous tables,
exceptions do occur. For example, a programmer could
carry out all testing strategies.

Table 1-5 similarly shows which categories of testers
are likely to use the different testing strategies. Again,
these are recommendations, not absolutes.

15.4. TheTesting LifeCycle

Software testing has alife cycle of itsown that is
similar to the software development life cycle. Testing
life cycle phases generally include planning,
requirements, design, implementation, and operation
(execution). Note that V&V activities apply to testing
life cycle products (reviews of test plans & designs,
etc.) in addition to software development life cycle
products.

If testing is carried out by or on behalf of the
development organization, the testing life cycle phases
should occur concurrently with the development life
cycle phases. Thisis not likely to be possible with
customer testing of COTS software. However, the
testing life cycle should still exist and be carried out.

Testing life cycle activities are described in detail in
|EEE Software Engineering Standards 829 and 1074
and are not discussed here. The following list provides
abrief synopsis of the activities based on these
standards, assuming that the testing will be carried out
by (or on behalf of) the customer.

e Test planning activities
— Preparetest plan
e Test requirements activities

— Determine the software qualities for which
testing isrequired
— Determine the software objects to be tested

assurance reviewers. (Personal communication on work being done
on the update of |EEE 1012).

Appendix B

— Obtain needed resources: budget, time, and assignment of personnel

Table1-3. Test Strategies Appropriate for Software Objects

Module Package Program Subsystem System
Source Code
Analysis X
Structural X 0] @)
Functiona 0] X X X X
Statistical X X X
Stress O X X X
Regression X X X X X
X = Test strategy should be used on specified software object
O = Test strategy may be used on specified software object
Table 1-4. Expected Pattern of Testersand Softwar e Objects
Module Package Program Subsystem System
Software
Engineer X X @]
Development
Organization @] X X 0] 0]
Customer X X
Independent
Tester @) @) X X X
X = Tester islikely to test specified software object
O = Tester may test specified software object
Table 1-5. Strategies Used by Testers
Software Development I ndependent
Engineer Organization Customer Tester
Source Code
Anaysis X (0] @)
Structural X X O
Functional X X X X
Statistical O X X
Stress @] X X X
Regression X X X X

X = Test strategy should be used on specified software object

O = Test strategy may be used on specified software object

50

» Test design activities
— Preparetest design specifications
— Preparetest procedures
— Prepare test case specifications
— Design test station

e Test implementation activities
— Prepare test cases
— Preparetest data
— Cresate test station

» Test execution activities
— Executetest cases
— Analyzetest results
— Prepare test reports

1.6. Faults, Errors, Failures

One purpose of testing isto identify and correct
program faults, which is done by examining program
failures.

1.6.1 Definitions

A fault is adeviation of the behavior of a computer
system from the authoritative specification of its
behavior. A software fault is amistake (also called a
bug) in the code.

An error isan incorrect state of hardware, software, or
dataresulting from afault. An error is, therefore, that
part of the computer system state that isliable to lead
to failure. Upon occurrence, afault creates a latent
error, which becomes effective when it is activated,
leading to afailure. If never activated, the latent error
never becomes effective and no failure occurs.

A failureis the external manifestation of an error. That
is, afailureisthe external effect of the error, as seen by
auser (human or physical device), or by another
program.

1.6.2 Reélationship of Faults, Errors, and Failures

Assume that the software object under test contains a
fault B. Depending on the circumstances, execution of
the code containing fault B may or may not cause a
change of state which creates an error E. Again,
depending on circumstances, E may or may not cause a
failure F to occur.18 Note that neither fault B nor error
E isobservable; only failure F is observable.

18 considerable time del ays may occur between these events. B
could potentially cause more than one type of error, and each such
error could potentially cause more than one type of failure,
depending on the actual execution circumstances of the code.

Appendix B

Dynamic testing1® consists of presenting the software
object with a sequence of inputs | and observing
failures. This amounts to searching for sequences| -
B - E - F. Other sequences are possible. For
example:

| alone (that is, no fault is encountered),
| — B (but no error occurs),
and| - B - E (but nofailure occurs).

None of these sequences can be observed from system
output, although two of them do contain faults.

As an example, suppose a program contains the
statement

x1l = (a+b) / (c + d)

This statement is used later on in one of two ways,
depending on the value of aflag variable which is
almost always true:

if (flag) theny =x11-4
elsey=x11+3

Thereisafault here, since the last statement contains a
typographical error - x11 (‘ex-one-on€’) is used
instead of X1l (‘ex-one-d’). Most of the time, this
does not matter, since the faulty statement israrely
executed. However, if it is executed, then variable 'y’
will have an incorrect value, which is an error
(incorrect state). Aslong as'y’ is not used, no
observable harm occurs. Once 'y’ isused later in a
calculation, however, the program may perform an
incorrect action, or simply fail. Thisaction (or the
program’ s failure) is the failure F mentioned above.

Although the cause of the failure runs fault-error-
failure, the diagnosis usually takes place in the other
order: failure-error-fault. Specifically, from failure F,
the activity of debugging attempts to infer the error
which caused the failure; this may or may not be done
correctly. The fault B must itself be inferred from the
inferred error; again, this may or may not be done
correctly. If the causal analyses of either of the
sequences, F — Eor E - B, isdoneincorrectly, fault
B isnot likely to be corrected. Worse, a correct piece
of code may be inappropriately “fixed,” resultingin a
new fault in the software object.

Animplication of thisisthat any estimate of the
effectiveness of atesting activity isinaccurate by an
unknown (and almost certainly unknowable) amount.
In particular, any estimate of the number of faults
remaining in the software object which is derived from

19gtatic analysis, discussed in Section 2, is an attempt to discover
faults directly by examining the source code.

Appendix B

testing is imprecise by an unknown amount. This
should not be surprising—similar effects can be
observed in science anytime inductive reasoning is
used.

It iswidely believed by software engineersthat a
properly designed test program can reduce the
uncertainties in testing effectiveness sufficiently that
they can be acceptably ignored. The operative words
are “properly” and “believed.” The first word isitself
ill-defined, while “belief” lacks the confidence that
comes with scientific or mathematical proof. A fina
point is that extending a general belief (that applies
generaly to testing) to a specific software object under
test adds an additional inference of unknowable
uncertainty.

These observations apply to all dynamic testing
strategies discussed below except statistical testing.
The latter isinherently interested in failures rather than
faults, so the argument does not apply. This argument
helps explain, however, why testing can never be
perfect.

1.7. Selection of Testing Strategies and
Techniques

This section discusses the context and goal's associated
with the testing of COTS software and provides
guidelines for applying the various testing strategies
discussed in the following sections.

1.7.1. Context for Selecting Testing Strategies

Thetesting of a COTS software item is normally done
within the context of alarger process whose goal isto
determine the acceptability or non-acceptability of the
COTS software for use in a particular application.
Consequently, this report does not address the issue of
determining acceptance criteriafor the use of aCOTS
software item in a particular application. It is assumed
that the acceptance process will identify specific needs
to be addressed with testing, that this report will serve
as areference for planning and conducting the
necessary testing, and that the results will be evaluated,
with other information, within the context of the
acceptance process.

A COTS software item might be tested in order to gain
additional information about the product itself or to
examine the behavior of the product in the planned
application. In general, the more important a COTS
software item isto safety, the less one would expect to
need after-the-fact COTS software testing to augment
other information in order to demonstrate acceptability.
In other words, the COTS software item should already
be demonstrably well-qualified for itsintended role. In
this case, testing activities will probably be narrowly
focused on particular qualities or attributes of the
software. For items less important to safety, it may be

52

appropriate (depending on the specifics of the
acceptance process) to rely to alarger degree on after-
the-fact testing, and a more comprehensive testing
effort might be appropriate. Regardless of the scope of
any potential testing effort, it will be useful to obtain
information about past and current faults as well as
configuration and operating parameters, reliability and
availability, and comments about other qualities based
on the experience of users of the COTS software item.

In addition to augmenting the testing effort conducted
during software development, there might also be new
requirements specific to the intended use of the COTS
software item that should be addressed with testing.
These might be related to particular safety functionsto
be performed, special performance constraints,
adaptation to new hardware platforms, particular
standards adopted for the application, or a need for
demonstrating high confidence in particular software
qualities. In these cases, the appropriate strategies must
be selected to address the areas of concern. This testing
effort could be quite extensive. For example, functional
testing might be used to verify that certain functions
are handled correctly, stress testing might be used to
examine performance in the target environment, and
statistical testing could be applied to assessreliability.

1.7.2. Considerationsfor Selecting Testing
Strategies

This subsection provides assistance in selecting testing
strategies and techniques to meet the needs defined by
a COTS acceptance process. Since there may be
multiple techniques that will address a particular
testing question, and since it is not possible to
anticipate all types of questions that might arisein
various situations, the information provided must be
considered as guidance rather than as a prescriptive
formula. It should also be noted that this section refers
to traditional third-generation languages (e.g., Ada, C,
C++, Fortran, and Pascal) and does not necessarily
apply specialized or devel oping technologies such as
artificial intelligence systems.

The process of selecting testing strategies for aCOTS
software item is constrained by the information
available. Table 1-6 presents a summary of the
minimum information required for the various testing
strategies. Representative information is also provided
regarding the extent of testing to be applied when using
aparticular testing strategy; refer to the appropriate
section for more detail. Table 1-6 provides a first-order
estimate of the prerequisites and scope of atesting
effort. Each situation is unique and the reviewer should
refer to the text and other references to make
determinations regarding the nature and extent a
specific testing effort. The terminology used in Table
1-6isexplained in later sections of this report.

Appendix B

Table 1-7 presents a set of questions about software taxonomy of faults presented in the Annex is also

qualities that can be addressed by selected testing
strategies. The table is not exhaustive. However, it

provides useful examples for selecting testing
strategies to meet specific testing requirements. The

helpful in selecting testing strategies. The terminology
used in Table 1-7 is explained in later sections of this

report.

Table 1-6. Sample Prerequisitesfor and Extent of Testing

Strategy: Minimum Information Suggested Extent of
Technique Goal Required Testing/Analysis
Static:
Inspection Examine architectural design Software requirements; One or more inspections. Group
(10) with requirements asreference architectural design decision on re-inspection based on
inspection results.

Inspection Examine detailed design with Architectural & One or more inspections. Group
(1) architectural design as detailed design decision on re-inspection based on
reference inspection results.

Inspection Examine source code with Source code & detailed One or more inspections. Group
(12) detailed design as reference design decision on re-inspection based on
inspection results.

Inspection Check code for specific Source code One or more inspections. Group
(other) qualities, properties, or decision on re-inspection based on
standards adherence (can be inspection results.

part of 12)
Inspection Verify allocation of software System requirements & One or more inspections. Group
(other) requirements software requirements decision on re-inspection based on
inspection results.

Inspection Check application-specific System & software One or more inspections. Group

(other) safety requirements safety requirements, decision on re-inspection based on
hazard/risk analyses inspection results.

Desk Verify key algorithms & Source code One pass per revision; continue

checking constructs until no new faults are found.

Automated Produce general/descriptive Source code One pass per revision

structural information; compute metrics

analysis values

Automated Fault detection Source code One pass per revision; continue

structural until no new faults are found.

analysis

Automated Standards violations Source code One pass per revision; continue

structural until no new faults are found.

analysis

53

Appendix B

Table 1-6. Sample Prerequisitesfor and Extent of Testing (cont.)

Strategy: Minimum Suggested Extent of
Technique Goal Information Required Testing/Analysis
Structural:
Path Verify internal control flow Source code; module Branch coverage
design specification
Loop Verify internal loop controls Source code; module Focus on loop boundaries
design specification
Data flow Verify data usage Source code; module All-'definition-usage’-pairs
design specification
Domain Verify internal Source code; module Focus on boundaries
(structural) controls/computations over design specification
input domains
Logic Verify internal logic Source code; module All combinations of conditions
(structural) (implementation mechanisms) design specification
Functional:
Transaction Verify implementation of Executable, software All transactions
application functions reguirements
Domain Verify functional Executable, software Representative domain values
controls/computations over reguirements including boundary and illegal
input domains values
Syntax Verify user interface and Executable, software All input/message constructs
message/signal constructs reguirements
Logic Verify implementation of the Executable, software All combinations of real-world
logic of the real-world requirements conditions
application
State Verify implementation of Executable, software All states/transitions
states associated with thereal- requirements
world application
Statistical Estimate reliability Executable, software Predetermined reliability target
reguirements,
operational profiles
Stress Examine robustness; Executable, software One pass per resource per revision
characterize degradation with requirements per operating mode; sampling of
increasing loads on resources combinations of resource loads
Stress Find breaking points; check Executable, software Continue testing a resource until
recovery mechanisms reguirements failure & recovery modes are well
understood
Regression Verify that changes have not Various input needed Continue until no new failures are
impacted the softwarein depending on test detected
unexpected ways strategies used in the

regression test suite

Appendix B

Table 1-7. Typical Testing Strategiesfor Investigating Softwar e Qualities

Software Applicable Testing
Quality Also see: Question to be Answered Strategies
Acceptability Validity Are real-world events handled properly? Functiona (T,D,L,Se)

How does the product perform in realistic, Stress
heavy load situations?
Accuracy Preciseness Areinternal calculations accurate? Structural (DF)
Are results accurate? Functional (T)
I's there confidence that important cal culations Static analysis (1,DC)
are accurate?

Availability Reliability Will the software be unavailable due to poor Statistical
reliability?

Will functions be available during heavy load Stress
situations?

Clarity Understand- I's the implementation sufficiently clear to a Static analysis (1,DC)

ability knowledgeabl e reviewer?

Completeness Are all requirements expressed in the design? Static analysis (1)
Areall design elements implemented in the Static analysis (1)
code?

Are internals complete? (no missing logic, Static analysis (ASA,I)
undefined variables, etc.)

Are all aspects of real-world transactions Functional (T)
implemented?

Are boundary values and al combinations of Functional (D,L,Se)
conditions accounted for?

Are recovery mechanisms implemented? Stress

Correctness Does the product have statically detectable Stetic analysis (All)
faults?

I's the implementation/modification structurally ~ Structural (All)
correct?

I's the implementation/modification functionally ~ Functional (All)
correct?

Does the product perform correctly in heavy Stress

load situations?

Have modifications had unintended effects on Regression

the behavior of the software?

Integrity Security Are access control schemes appropriate? Static analysis (1)
Are access controls and internal protections Structural (All)
correctly implemented?

I's end-user access management correct? Functional (T)
Are access-related boundary values, logic, Functional (D,Sx,L,Se)
states, & syntax correctly implemented?

L egend:

ASA Automated Structural Analysis

D Domain Testing
DC Desk Checking
DF DataFlow Testing

I Inspection Se State Testing
L Logic Testing Sx Syntax Testing
Lp Loop Testing T Transaction Testing

P Path Testing

55

Appendix B

Table1-7. Typical Testing Strategiesfor | nvestigating Softwar e Qualities (cont.)

Software Applicable Testing
Quality Also see: Question to be Answered Strategies
Interface Internal Have interface standards & style been followed? Static analysis (ASA,l)

Consistency Consistency
Is parameter & variable usage consistent across ~ Static analysis (ASA,I)
interfaces?
I's transaction data handled consistently among Functional (T)
modules?
Are boundary conditions treated consistently? Functiona (D)
Is message syntax consistent? Functional (Sx)
Is decision logic consistent among modul es? Functional (L)
Are system states consistently treated among Functional (Se)
modules?
Internal Interface Have standards & style been followed? Static analysis (ASA,I)
Consistency Consistency
Is parameter & variable usage consistent? Static analysis (ASA,I)
Are conditions handled consistently with respect ~ Structural (P, Lp,D,L)
to control flows?
Arethere inconsistenciesin data handling? Structural (DF)
(typing, mixed mode, 1/O compatibilities, etc.)
Are real-world events and logic handled Functional (L, Se)
consistently?
Inter- Does the architecture facilitate interoperability? Static analysis (1)
operability
Do modules used in transactions exchange & Functional (T,D,Se)
use information properly?
Performance Isintra-module timing within specification? Structural (P,Lp)
Are transactions performed within required Functiona (T)
times?
Are timing requirements met when boundary Functional (D)
values are input?
I's system performance adequate under heavy Stress
load conditions?
Preciseness Accuracy Will internal representations yield required Static analysis (DC)
precision?
Areinternal calculations sufficiently exact? Structural (DF)
Are real-world transaction results sufficiently Functiona (T)
exact?
Reliability Availability What is the probability of running without Statistical
failure for agiven amount of time?
Legend:

ASA Automated Structural Analysis
D Domain Testing

DC Desk Checking

DF DataFlow Testing

I Inspection Se State Testing
L Logic Testing Sx Syntax Testing
Lp Loop Testing T Transaction Testing

P Path Testing

56

Appendix B

Table1-7. Typical Testing Strategiesfor | nvestigating Softwar e Qualities (cont.)

Software Applicable Testing
Quality Also see: Question to be Answered Strategies

Robustness Has appropriate recovery logic been Static analysis (1)
implemented?

Are poorly specified/invalid transactions Functiona (T,Sx)
handled correctly?

Are marginal/illegal inputs handled correctly? Functional (D,Sx)
Are unexpected combinations of Functiona (L,Se)
conditions/states handled correctly?

Can the system continue operating outside of Stress

normal operating parameters?

Security Integrity Are access controls properly Static analysis (1)
designed/implemented?

Are access controls consistent with the operating Static analysis (1)
environment?

Are the structural aspects of access control Structural (All)
mechanisms correct?

Security Do access management functions work Functiona (T)

(continued) correctly?

Do access management functions work correctly Functional (D,Sx,L,Se)
in the presence of marginal or illegal values and
constructs?

Simplicity Are implementation solutions overly complex? Static analysis (1)
Are complexity-related metric values reasonable Static analysis (ASA,I)
for agiven situation?

Testability How can aspects of the software be tested? Static analysis (DC,1)

Understand- Clarity I's the designer/implementer intent clear? Static analysis (DC,1)

ability
Does information characterizing the software Static analysis (ASA,I)
make sense?

Usability User Can the user correctly form, conduct, & Functiona (T,D,Sx)

friendliness interpret results of transactions?
Does the user interface design support Static analysis (1)
operational procedures?

User Usability Is the user comfortable in forming, conducting, Functional (T,Sx)

friendliness and interpreting results of transactions?

Validity Acceptability Arerequirements traceable? Static analysis (1)
Are implementation solutions appropriate? Static analysis (DC,)
Isthe real world appropriately represented? Functional (All)
Isthe implementation/modification structurally ~ Structural (All)
correct?

I's the implementation/modification functionally ~ Functional (All)
correct?
Legend:

ASA Automated Structural Analysis

D Domain Testing
DC Desk Checking
DF DataFlow Testing

I Inspection Se State Testing
L Logic Testing Sx Syntax Testing
Lp Loop Testing T Transaction Testing

P Path Testing

57

Appendix B

58

Appendix B

2. STATIC SOURCE CODE ANALYSIS

2.1. Purpose of Static Source Code
Analysis

Static source code analysis is the examination of code
by means other than execution, either manual or
automated, with the intent of (1) producing general,
metric-related, or statistical information about a
software object, (2) detecting specific types of faultsin
a software object, (3) detecting violations of standards,
or (4) verifying the correctness of a software object.
Static analysis pertains to certain categories of faults
and should be considered complementary to dynamic
testing in the overall testing effort. The qualities
addressed by static analysis, summarized in Table 1-2,
are discussed below.

The section is primarily focused on static source code
analysis; however, some techniques, such as
inspection, have broader applicability. Some of these
extensions are discussed below.

2.2. Benefitsand Limitations of Static
Source Code Analysis

Static analysisis code examination without code
execution. This approach provides a different way of
thinking about fault detection and, therefore, static
analysis techniques are best applied as part of an
overall testing (or verification and validation) program
that also includes extensive dynamic testing. The
advent of automated, interactive software
environments and testing toolsis blurring the
distinction between dynamic testing and static analysis
somewhat. In some of these tools, results are available
from static examinations carried out in support of
dynamic, structural testing. The use of interpreters as
code is being examined can automate the desk
checking technique of stepping through lines of code
and, therefore, can produce information about run-time
states (although this information may also be related to
the use of the interpreter).

2.2.1. Ben€fits

There are a number of features of static analysis
techniques that make them an effective complement to
dynamic techniques. The inspection or review-oriented
techniques have the advantage of combining the
different perspectives of the participants and can
produce fault information that may be overlooked by a
single examiner. Inspections have been found to be
very effective in detecting the types of faults that can
be found with static techniques. In addition, manual
static analysis techniques can easily incorporate

59

project-specific standards adopted for the application
of aCOTS item to aparticular use. Automated
structural analyzers can perform large numbers of
static checks that could not be performed manually,
and may detect structural faults that might go
undetected in dynamic testing since all possible paths
cannot be covered by test cases. Static analysis
techniques that provide general information about
software objects can produce information that will be
valuable in developing test cases for dynamic testing.

Regarding the assessment of software qualities, static
analysis techniques are effective in examining software
for possible faults related to completeness, consistency,
and validity. For example, information about the
completeness of a software item can be gained from
automated structural analyses that discover missing
logic, unreachable logic, or unused variables.
Inspections can provide information about the
traceability of requirements. Both inspections and
automated structural analyses provide a means for
evaluating the consistency of application of standards
and style guidelines, as well as for checking parameter
and variable usage from a static perspective. Desk
checking can provide information about the accuracy
and precision of algorithm implementations.

Static analyses also provide information about other
software qualities that may be important to the
intended use of a COTS software item, including
testability, usability, interoperability, clarity,
understandability, robustness, and simplicity. These
tend to be areas where judgment is required, making
the manual techniques particularly effective. The
qualities are addressed with the manual techniques by
including the appropriate considerations in inspection
checklists or desk-checking tasks. For example, the
number of questions about intent raised during an
inspection is an indicator of understandability. In
addition, automated structural analyses can provide
metrics and structural information that is useful in

ng these software qualities.

2.2.2. Limitations

Static analysis techniques, in general, do not provide
much information about run-time conditions. In
addition, many of these techniques are labor-intensive
and, therefore, can be quite expensiveto carry out. In
cases where there are project-specific considerations
that need examination by an automated tool, automated
analyzers must be developed, which is also a costly
endeavor.

Appendix B

2.3. Information Required to Perform
Static Source Code Analysis

Asaminimum, the source code must be available. For
most static analysis techniques to be effective, it isalso
necessary to have information on the context (intended
usage), requirements, and design of the software object
being examined. To select effective approaches for
static analysis, it is useful to know what static analysis
capabilities were applied in the development
environment. In particular, most compilers perform
various types of automatic static checking. In many
cases, this checking is limited to those checks that
support the compiler’s primary goal of detecting
syntactic faults before trandating statements to object
code. Compiler results such as syntactic correctness,
uninitialized variables, cross reference listings and
similar matters are avery useful part of static analysis,
but should be considered as the first step in static
analysis, not the totality. Information on the compiler
checks performed is useful in determining the relative
emphasis to place on the various other techniques that
might be applied.

Since one goal of static source code analysisisto
detect violations of standards, it is necessary to have
information regarding the standards applied during the
development effort. Thisinformation may be difficult
to obtain for COTS software; however, some
information, such as language standards or the
compiler used, should be available. Perhaps amore
important application of standards checking isthe
development (by the testing or customer organization)
of required standards regarding what is acceptable for
the particular COTS software application. For
example, if certain language constructs are permitted
by the language standard but are known to be
troublesome in past practice, a safety-critical
application might require alocal practice standard that
prohibits their use.

2.4. Methods of Performing Static Source
Code Analysis

The static analysis of source code for a software object
must be planned, designed, created, executed,
evaluated, and documented.

24.1. Static Analysis Planning and Requirements

The following actions are required to plan and generate
requirements for static analysis of software objects.

1. Determine the software qualities to be evaluated
with static techniques. Qualities typically
examined in static source code analysis are shown
in Table 1-2. For the static analysis of safety-
related COTS software, the primary quality of
interest is correctness, particularly asit isrelated
to the qualities of completeness, consistency, and

validity. Other qualities, that may be of interest,
depending on the intended role of the COTS
software item, can be assessed with static analysis.
These include testability, usability,
interoperability, clarity, understandability, and
simplicity.

2. Determine which static analysis techniques will be
required. Code inspections and automated
structural analyzers are recommended as a
minimum.

3. Determine what resources will be required in order
to carry out the analyses. Resources include
budget, schedule, personnel, equipment, analysis
tools, and the platform for automated structural
analyses.

4. Determine the criteriato be used to decide how
much static analysis will be required. Thisisa
stopping criterion—how much analysisis enough?

5. Determine the software objects to be examined.
2.4.2. Analysis Design and I mplementation

The following actions are required to design and
implement static analyses.

1. Create procedures for carrying out the analyses.
For techniques such as code inspection, this
involves tailoring the technique to the particular
project environment. For other static source code
analyses, the procedures will specify analysesto
be applied.

2. Preparefor the orderly and controlled application
of theindividual analyses. The following
information should be prepared for each analysis:

a Analysisidentification. Each analysis must
have aunique identifier.

b. Purpose. Each analysis must have a specific
reason for existing. Examples include the
application of an automated standards auditor
to ablock of code or the examination of a
block of code to determine whether a
particular error-prone construct has been
used.

c. Input data. The precise data, if any, required
in order to initiate the analysis must be
specified. This should include any parameter
values needed by automated analyzers (this
information may also be appropriate as part of
the procedures).

d. Initial state. In order to reproduce an analysis,
theinitia state of the automated analyzer may
need to be specified.

e. Results. The expected results of the analysis
must be known and specified. This could
include the absence of a detection of the fault
being targeted or the specific value range of a
metric.

3. Create the platform to support the automated
structural analyses. Thisisamechanism for
selecting, executing, evaluating, and recording the
results of analyses carried out by automated static
analyzers on the software object.20 An automated
structural analyzer might perform a pre-
programmed set of checks or might require input
to select specific checks (as with an interactive
tool). Platform components, illustrated in Figure 2-
1, include;

a. Analysiscase selection. A means of selecting
analysis cases (checks) to be executed is
required. Thisinformation may be kept in a
file or database, and the selection may simply
consist of “get next analysis case.”

b. Analyzer program. A means of setting the
analyzer’'sinitia state (if necessary),
providing input to the analyzer, and recording
the output from the analyzer is required.

c. Resultsdatabase. A means of recording the
results for future analysis and evaluation is
needed. Typical datato be captured include
the analysisidentifier, date, version of
module, analysis output, and an indication of
the acceptability of the results.

2.4.3. Execution and Evaluation of the Analyses

The procedures must be carried out and analyzed. If a
fault isindicated in the software object and the
development organization is performing the analysis,
the software engineer is expected to correct the fault.
The pattern of test—fix—test—fix continues until all
discrepancies have been resolved.

In the case of COTS, obtaining corrections may be
very difficult. Suppose the analysis is being performed
by (or on behalf of) the customer. If the software was
developed for the customer under contract, there
should be considerable leverage for obtaining
corrections. If the software is a consumer product (for
example, alibrary accompanying a compiler used for
development), experience shows that many developers
have little interest in expensive repairs that satisfy a
limited marketplace. In this case, the options of the
customer may be simply to reject the software or to
evaluate each fault detected and determine its effects

207he process of selecting and initiating analyses and evaluating the
results might be a manual activity; in this case the platform described
islargely conceptual, although the databases should exist and be
controlled.

61

Appendix B

on safety. If more than one fault exists, the cumulative
effect of al the faults on safety must also be
determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related to
new requirements or standards arising from the
specific, intended application of the COTS product.
They might also be minor faults that might have
escaped detection during product development. In
these cases, the significance of the faults should be
evaluated and the options for obtaining corrections
might be pursued. However, if one or more serious
faults pertaining to the product itself are discovered,
confidence decreases rapidly regarding the suitability
of the product for use in a safety-related application.

2.5. Discussion of Static Source Code
Analysis

Static source code analyses, whether done totally
manually or supported by automated techniques, are
typically manpower-intensive processes. Manual
processes such as inspections require team efforts.
Many of the computer-aided methodologies require the
involvement of the development team, the
development of project-specific tools, or on-line use of
interactive tools.

It should be noted that, although these techniques
involve high manpower costs, static analysis
techniques are effective in detecting faults. One
controlled experiment (Basili and Selby, 1987) found
that code reading detected more software faults and
had a higher fault detection rate than did functional or
structural testing. Since static analysis and dynamic
testing detect different classes of faults, a
comprehensive effort should employ as many static
and dynamic techniques as are practical for the specific
project. The remainder of this section discusses various
static analysis techniques.

2.5.1. Inspection

Among the manual techniques, code inspection, peer
reviews, and walkthroughs are effective methods for
statically examining code. The techniques are
essentially similar in that teams of programmers
perform in-depth examinations of the source code;
however, code inspections are distinguished by the use
of checklists and highly structured teams. One of the
important benefits common to these techniquesis that
the different perspectives and backgrounds of the
participants help uncover problems that the original
software engineer overlooked. All three techniques
benefit from the participation of development team
members and probably |ose some effectiveness if these

Appendix B

Input

Selection

Analysis

Repertoire

Output

Analyzer
Program

|
Software
Object

Results

Database

Figure 2-1. Conceptual Platform for Automated Static Analysis

members are not present, which islikely to be the case
with COTS software. However, careful attention to the
development and tailoring of checklists for aparticular
COTS application, along with the high degree of
structure provided by the inspection process, should
make source code inspections a valuable static analysis
technique for COTS software. Peer reviews and
walkthroughs are not discussed further here;
information on how to perform structured
walkthroughs can be found in Y ourdon (1989).

Fagan (1976) provides the definitive work on
inspections, a technique that can apply to awide range
of products. Inspections are defined for three points,
labeled 10, 11, and 12, in the programming process.
Fagan inspections that inspect against the software
requirements are called 10 inspections. These
inspections would typically be performed as part of the
software design activities, as described in NUREG/CR-
6101 (Lawrence, 1993). 11 inspections are typically
performed as part of the software design activities and
inspect against high-level software architectural

design. 12 inspections are performed during software
implementation and inspect implemented code. Figure
2-2 shows the relationship between software activity,
product, and inspection type.

10 inspections typically examine the set of unit and
program designs, and their interactions to determine
whether the functional content is consistent with the
specified software requirements. Of particular interest
for thisinspection are data flows among system
components and potential processing deadlocks. 11
inspections target design structure, logic, and data
representation based on the previously inspected high-
level design. 12 inspections focus on the translation of
the detailed design into code and compliance with
standards, and are commonly referred to as source code

62

inspections. Depending on the information available
about a COTS software product, any of the inspections
described can be an effective technique for examining
the product. In evaluating a COT S software product for
use in a safety-related application, the inspection
techniqueis useful in examining the allocation of
system requirements to software and in comparing
these software requirements to the capabilities of the
COTS product.

All inspections follow a specific process containing
planning, overview, pre-inspection preparation,
inspection, rework, and follow-up phases. The follow-
up phase might consist of a complete re-inspection if
significant rework is required. Specific roles must be
defined for an inspection; atypical team might include
the designer, coder, tester, and a trained moderator.
Additional perspectives of value are those of acode
maintainer, user, standards representative, and
application expert. The actual inspections require
intense concentration and, therefore, are usually
performed on small amounts of material during short
(1- to 2-hour) inspection sessions. Published
experience (Dyer 1992) indicates that 50 to 70 percent
of faults can be removed by the inspection process
(i.e., employing 10, 11, and |2 inspections).

Most discussions of source code inspections focus on
the use of the technique during the devel opment
process. For COTS software, a source code inspection
would be performed well after development and would
involve teams of programmers not involved in the
original development. Therefore, particular attention
should be given to the tasks of developing an effective
checklist and establishing a set of standards specific to
the particular application of the COTS software. Any
standards and checklists that were applied during
development are a good starting point. Myers (1979)

Appendix B

Software Activity

Software
Requirements

Software
Design

I Implementation Code

Product

Software
Requirements
Specification

Software Design
Description
(Architecture)

Software Design
Description
(Detailed)

Inspection Type

10 inspection

11 inspection

12 inspection

Figure 2-2. Software Development Activities, Products, and I nspections

gives aset of typical checklist items grouped by data
reference faults, data declaration faults, computation
faults, comparison faults, control flow faults, interface
faults, and input/output faults. This serves as a starting
point; the list should then be enhanced by specific
knowledge about the product and application in
guestion.

The purposes of performing after-the-devel opment
source code inspections on COTS software are to
detect previously undetected faults, to ensure that
dangerous practices have not been used, to discover
whether undocumented features are present, and to
focus on anything special pertaining to the use of the
COTS application in a specific environment. In
planning for static analysis, strategies should be
developed for applying techniques efficiently given
project resources and constraints (subject to the
requirements of the commercial dedication process).
The entire COTS item should be inspected if possible.
If not, the focus should be directed toward key
functional areas with some additional random
inspections. A powerful practice with any testing or
evaluation technique is to attempt to classify detected
faults or observed failures (such as might have been
seen in other uses of the COTS item) and then to re-
examine the code, searching specifically for other
instances of the fault class.

Establishing standards for a source code inspection of a
COTSitemis particularly important. Depending on the
criticality of the particular use of the COTS item, it

may be useful to start with atypical set of standards for
the computer language in question and then to augment
this set with additional standards based on what is
known about the application in which the COTS item
will be used. For example, a code unit might have been
produced according to an established language
standard. It might also be known that certain legitimate
constructs are prone to errors. For the purposes of the
COTS inspection, taking into account the intended use
of the item, a requirement preventing the use of the
construct might be added to the set of coding

standards. In this case, the particular COTS item might
be found unsuitable for the particular intended use. As
an aternative, the discovery of the usage of the
construct might trigger separate static analyses or
dynamic tests focused on that area

2.5.2. Desk Checking

Desk checking is a proven, primarily manual, static
analysis technique. It typically involves one
programmer examining code listings for faults (code
reading), checking computations by independent
means, and stepping through lines of code. To the
extent possible, desk checking should not consist of
manually performed activities that could be automated.
For example, an automated standards checker could be
run and desk checking could be used to confirm or
justify violations. Desk checking tends to concentrate
on special problems or considerations posed by the
application and involves techniques appropriate to
those problems or considerations. This process can be

Appendix B

aided with the use of interactive debuggers, interactive
analysistools, or interactive analysis features of
software devel opment environments. Regardless of
which tools are used to aid the process, strategy and
procedures must be developed for the systematic
evaluation of the code. In addition to the discovery of
specific faults, the results obtained in desk checking
should also be used to help tailor the standards and
checklists used in future source code inspections.

2.5.3. Automated Structural Analysis

Automated structural analysisisthe use of an
automated checker to examine source code for faults
occurring in dataand logic structures. An automated
structural analyzer can be focused to detect specific
faultsin the code, or can produce general information
about the code, such as cross-reference maps of
identifiers, calling sequences, and various software
quality metrics. Information in the general category is
useful as reference datain the inspection and desk
checking analyses discussed above. An automated
structural analyzer looks for faults such as those listed
below (Glass 1992):

* Undeclared or improperly declared variables (e.g.,
variable typing discrepancies)

» Reference anomalies (e.g., uninitialized or
initialized but unused variables)

* Violations of standards (language and project
standards)

» Complex or error-prone constructs
» Expression faults (e.g., division by zero)

* Argument checking on module invocations
(number of arguments, mismatched types,
uninitialized inputs, etc.)

* Inconsistent handling of global data

* Unreachable or missing logic.

Automated structural analyzers are typically language-
specific and possibly project-specific. Discussions of
some of the techniques used by structural analyzers are
contained in Section 3.4 of this report. Price (1992)

provides information on static analysis tools. Typical
automated tools include:

e Code auditors (standards and portability)

» Control structure analyzers (calling graphs, branch
and path analysis)

* Crossreference generators
» Dataflow analyzers (variable usage)

* Interface checkers

e Syntax and semantic analyzers
¢ Complexity measurement analyzers.

An approach for performing automated structural
analysis on COTS software would be as follows:

e Determine which software qualities are to be
investigated.

e Determine, if possible, what static analysis
capabilities were applied in the development of the
code (e.g., compiler checks).

¢ Determine what COTS structural analysistools are
available for the language used (and particular
language standard if more than one exists) by the
target COTS software.

e Select and apply the appropriate language-specific
tools.

« Determine whether there are project-specific
considerations that should be checked using an
automated structural analyzer.

« Develop and apply the project-specific analyzer (it
may be possible to structure the use of the
capabilities of an interactive analysistool to get at
these issues).

2.5.4. Other Methods

Various other methods for static source code analysis
have been researched. Some are mentioned briefly here
but are not felt to be practical for the static analysis of
COTS software at thistime, either because the methods
are integrated into the development process or because
extensive development work would be required to
implement the method.

Proof of correctnessisa process of applying theorem-
proving concepts to a code unit to demonstrate
consistency with its specification. The code is broken
into segments, assertions are made about the inputs and
outputs for each segment, and it is demonstrated that, if
the input assertions are true, the code will cause the
output assertions to be true. Glass (1992) states that the
methodology is not yet devel oped enough to be of
practical use, estimating that practical value for
significant programs is about 10 years away.
Advantages, if the method is practical, include the use
of aformal process, documentation of dependencies,
and documentation of state assumptions made during
design and coding. Proof of correctness is a complex
process that could require more effort than the
development itself.

Symbolic evaluation is atechnique that allows
variables to take on symbolic values as well as numeric

values (Howden 1981). Code is symbolically executed
through a program execution system that supports
symbolic evaluation of expressions. Passing symbolic
information through statements and operating
symbolically on the information provides insights into
what a unit is actually doing. Thistechnique requiresa
program execution system that includes symbolic
evaluation of expressions and path selection. One
application of thistechnique would be an attempt to
determine if aformula or algorithm was correctly
implemented.

65

Appendix B

Automated structural analyzers are usually based on
pre-defined sequences of operations. An extension to
automated structure analyzer capabilities would beto
develop mechanisms whereby user-specifiable
seguences could be defined for subsegquent analysis.
Olender (1990) discusses work to define a sequencing
constraint language for automatic static analysis and
predicts its value when embedded in aflexible,
adaptable software environment.

Appendix B

66

Appendix B

3. STRUCTURAL TESTING

3.1. Purposeof Structural Testing

Structural testing (also known as “white box” or “glass
box” testing) is conducted to evaluate the internal
structure of a software object. The primary concerns of
structural testing are control flow, data flow, and the
detailed correctness of individual calculations.
Structural testing istraditionally applied only to
modules, although extensions to subsystems and
systems are conceivable. It is generally carried out by
the software engineer who created the module, or by
some other person within the devel opment
organization. For COTS software, personnel from the
development organization will probably not be
available; however, structural testing can be carried out
by an independent test group. The qualities addressed
by structural testing, summarized in Table 1-2, are
discussed below.

3.2. Benefitsand Limitations of Structural
Testing

Both the benefits and the limitations of structural
testing are effects of the concentration on internal
module structure. Structural testing is the only method
capable of ensuring that al branches and loopsin the
modul e have been tested. There are important classes
of faultsthat are unlikely to be discovered if structural
testing is omitted, so no combination of the other test
methods can replace structural testing.

3.2.1. Ben€fits

Beizer (1990) states that path testing can detect about
one-third of the faultsin amodule. Many of the faults
detected by path testing are unlikely to be detected by
other methods. Thus path testing is a necessary but not
sufficient component of structural testing. A
combination of path and loop testing can uncover 50 to
60% of the intra-modular faults. Adding data flow
testing results, on average, in finding nearly 90% of
intra-module faults. (It is assumed here that a thorough
testing effort is performed with respect to each
technique.) Some modules, of course, are worse than
average, and the remaining faults are likely to be
particularly subtle.

Structural testing is focused on examining the
correctness of the internals of amodule, i.e., on faults
relating to the manner in which the module was
implemented. This includes faults related to accuracy,
precision, and internal consistency. Control flow faults
based on inconsistent handling of conditions can be
found, as well as data inconsistencies related to typing,

67

file 1/0O, and construction of expressions. Some
information, such as algorithm timing, can be gained
regarding software performance. Finally, emphasis on
testing proper referencing and data handling as well as
on the implementation of access controls provides
information about integrity and security.

3.2.2. Limitations

Structural testing isimpossible if the source codeis not
available. The modules must be well understood for
test cases to be designed and for correct results of the
test cases to be predictable. Even moderately large
collections of well-designed modules benefit from the
assistance of reverse engineering tools, test generators,
and test coverage analysis tools. Generating an
adequate set of structural test casesis likely to be quite
time-consuming and expensive.

Structural testing is almost always restricted to testing
modules. Given further research, it might be possible
to extend structural testing to subsystems and systems,
which would be useful for adistributed control system
(DCYS). Here, the anal ogy to the flow of control among
the statements of amoduleis the flow of control that
takes place as messages are passed among the
processes making up the DCS. When concurrent
communicating processes are executing on a network
of different computers, subtle errorsinvolving timing
can occur, and structural testing might be extended to
help detect these.

3.3. Information Required to Perform
Structural Testing

Structural testing requires detailed knowledge of the
purpose and internal structure of the module: module
specification (including inputs, outputs and function),
modul e design, and the source code.

A test station is recommended. This station would have
the ability to select pre-defined test cases, apply the
test cases to the module, and eval uate the results of the
test against pre-defined criteria.

3.4. Methods of Performing Structural
Testing

The structural test must be planned, designed, created,
executed, evaluated, and documented.

3.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for structural testing.

Appendix B

1. Determine the software qualities that are being
evaluated. For the structural testing of safety-
related COTS software, the primary quality of
interest is correctness, particularly in the sense of
accuracy, precision, robustness, and internal
consistency.

2. Determine which structural testing techniques will
be required. Control flow (path) and data flow
testing are the minimum requirements. Additional
techniques may be required in some cases.

3. Determine what resources will be required in order
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test
station, and test data.

4. Determine the criteriato be used to decide how
much testing will be required. Thisis a stopping
criterion—how much testing is enough? For
example, “95% of all paths in the module shall be
covered by control flow testing.”

5. Determine which modules will be tested.
3.4.2. Test Design and Test Implementation

The following actions are required to design and
implement structural testing.

1. Create procedures for executing the structural test
cases. Thisistypically done within the context
created by test plan and test design documents
(IEEE 829). Additional guidance for the testing
process for modulesis givenin |EEE 1008.

2. Createindividual test cases. Each test case should
contain the following information:
a Test identification. Each test case must have a
unique identifier.

b. Purpose. Each test case should have a specific
reason for existing. Examplesinclude
executing a specific path through the module,
mani pulating a specific data object, or
checking for a specific type of fault. For the
latter, see headings 3 and 4 of the Bug
Taxonomy in the Annex.

C. Input data. The precise data required in order
to initiate the test must be specified.

d. Initial state. In order to reproduce atest case,
theinitial state of the module (before the test
begins) may need to be specified. This
information is not necessary if the moduleis
intended to execute correctly and identically
inall initial states. For example, a square root
module should return the sgquare root of the
input value no matter what has gone before.

68

e. Test results. The expected results of the test
must be known and specified. These can
include values of data objects external to the
modul e (such as actuator values and database
values) and values of output parameters
returned through the module calling interface.

f. Final state. In some cases, the final state of
the module must be specified as part of the
test case information. This can occur, for
example, if the final state after acall isused
to modify the execution of the module the
next timeit is called.

3. Createthetest station. Thisisamechanism for
selecting, executing, evaluating, and recording the
results of tests carried out on the module. Test
station components, illustrated in Figure 3-1,
include:

a. Test case selection. A means of selecting test
cases to be executed. Test case information is
typically kept in afile or database, and the
selection may simply consist of “get next test
case.”

b. Test program. A means of setting the
modul€e' sinitial state (if necessary), providing
input to the module, recording the output
from the module and (if necessary) recording
the final state of the module.

c. Testoracle. A means of determining the
correctness of the actual output and module
State.

d. Resultsdatabase. A means of recording the
test results for future analysis and evaluation.
Typical data are: test identifier, date, version
of module being tested, test output and state,
and an indication of correctness or failure of
the test.

3.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the results
analyzed. If discrepancies between the actual and
expected results occur, there are two possibilities:
either the test case has afault or the module has a fault.
In the first case, the test case should be corrected and
the entire test procedure rerun.

If the module has a fault and the devel opment
organization is performing the test, the programmer is
expected to correct the fault. The pattern of test—fix—
test—fix continues until al discrepancies have been
resolved.

Appendix B

Source Test Case
Code Selection
Test Case Test Case
Generator Database

Input Output

. Test

Program

Software

Object
Test
» Oracle <
Correctness
Results
Database

Figure 3-1. Typical Test Station Componentsfor Structural Testing

In the case of COTS, obtaining corrections may be
very difficult. Suppose the test is being performed by
(or on behalf of) the customer. If the software was
developed for the customer under contract, there
should be considerable leverage for obtaining
corrections. If the software is a consumer product (for
example, alibrary accompanying a compiler used for
development), experience shows that many developers
have little interest in expensive repairs that satisfy a
limited marketplace. In this case, the options of the
customer may be simply to reject the software or to
evaluate each fault detected by the testing and
determine its effects on safety. If more than one fault
exists, the cumulative effect of al the faults on safety
must also be determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related to
new requirements arising from the specific, intended
application of the COTS product. They might also be
minor faults that might reasonably have escaped
detection during product development. In these cases,
the significance of the faults should be evaluated and
the options for obtaining corrections might be pursued.
However, if one or more serious faults pertaining to the
product itself are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

69

3.5. Discussion of Structural Testing

A brief summary of several structural testing methods
isgiven here. The material in this section is based
largely on Beizer 1990; see that reference for detailed
tutorials. Note also that domain testing and logic
testing (discussed in Section 4) are structural testing
techniquesiif applied to a software object’s
implementation instead of to its specifications.

3.5.1. Control Flowgraphs

Structural testing methods generally make use of a
control flowgraph of the module being tested. Thisis
an abstraction of the module in the form of adirected
graph which captures only the properties of the module
which are being tested. Control flowgraphs are defined
(informally) asfollows:

¢ A block of statementswhich do not involve
control transfer in or out except from one to the
next are replaced by a simple node of the control

graph:

Appendix B

* A branch statement (IF statement) isreplaced by a
node representing the branch predicate with one
edge for each outgoing branch:

* Ajunction is represented by a node with two
incoming edges:

~Sa

* Aloop statement (DO, WHILE, FOR) is replaced
by its component initialization—ncrement—test
parts.

Figure 3-2 shows a (nonsensical) sample module.
Figure 3-3 isthe corresponding flowgraph. Each node
is numbered; the numbers are repeated in the program
listing in Figure 3-2. (They are for annotation only, not
part of the module.)

Begin module 1
L22 x=x+1 2
y=7
L3: ifz<4 3
then x = 2*x 4
esex=x-1 5
ifz=0 thengotoL2 6
ify=x-z thengotoL3 7
ifz=2*z 8
theny=y-1 9
w = 2*X
dseifz<2 thengotoL2 10
end module 11

Figure 3-2. Example of a Program

A link is defined to be an edge of the flowgraph—it
represents transfer of control from one block of code to
another. A segment is a sequence of nodes and links—
for example, in Figure 3-3, the progression through
nodes 2, 3, 4, 6, and 7 isasegment. A pathisany
segment from the initial node of the module to the
terminal node. The path contains aloop if any nodeis
repeated. The length of the path is the number of links
on the path. The number of pathsis the number of
distinct paths. For al but the simplest module, there are

70

alarge number of paths (a path with one iteration of a
loop is distinct from the same path but with two loop
iterations).

3.5.2. Control Flow (Path) Testing

Path testing is aimed at discovering software faults
existing in the flow of control within a module; it does
not address cal culations within the module except for
those calculations that affect the flow of contral. It is
assumed in this discussion that the module iswrittenin
athird-generation programming language (such as C,
Pascal, or Ada), has asingle entry point, and has a
single exit poi nt.21 See Beizer 1990 for extensions to
assembly language modul es.

Execution of a module consists of the execution of a
path within the module. Different inputs to the module
may cause different paths to be executed. In the
languages being considered, statements fall into severa
sets: arithmetic, branches, and loops. Branches usually
consist of IF, CASE, GOTO and RETURN
statements.22 L oops usually consist of DO (or FOR)
and WHILE statements, plus GOTOs that return control
to apreviously executed statement. Any path that
contains the same statement more than once has a loop.

The completeness of control flow testing isreferred to
astest coverage. Two criteriafor coverage
measurements are statement coverage and branch
coverage. Statement coverage requires that every
statement in the module be executed at least once (also
called node coverage). In Figure 3-3, 100% node
coverage is achieved if all nodes are executed at least
once. Sinceit is possible to cover al nodes without
covering al links (for example, in Figure 3-3 a set of
paths can be established to cover all nodes without
traversing links such as 10-2 and 7-3), statement
coverage isavery weak criterion that is never
sufficient in safety-related applications.

Therefore statement coverage will not be discussed
further. Branch coverage requires that the set of test
cases cause every statement, every alternative of every
branch, and every loop statement to be executed.

Methods (mostly heuristic) exist to create areasonable
number of test cases that include all statements and all
branches (Beizer 1990). These are beyond the scope of
this report. The module may need to be instrumented
(modified by inserting code) so that evidence can be
obtained to ensure that each test case performs as

21 Note that multi ple RETURN statements within the module do not
constitute separate exit points, since they can be easily modified to
single formal exit points without change in correctness.

22 Syntax varies among languages—the forms used here are typical.

Appendix B

ENTRY

O—==C

EXIT

(10)

N

Figure 3-3. Flowgraph Corresponding to the Modulein Figure 3-2

predicted. Theinternal state of the module (values of
local variables) may aso need to be examined to verify
test case results.

3.5.3. Loop Testing

A loop occurs whenever anode is repested in a path.
Thisincludes both well-structured and ill-structured
loops; examples of both are shown in Figure 3-4.

L oop testing assumptions are similar to path testing
assumptions. It is assumed that faults exist only in the
flow of control around loops—there are no calculation
faults or branch faults. It is assumed that the module
specifications are correct and achievable. It is assumed
that data used in the module is correctly defined and
accessed.

Faultsin loops tend to occur around the minimum and
maximum number of iterations that are possible.
Consider the loop statement

forn=1tokdo{...}

where 1 < kmjn < k < kmax < o;

(Kmin and kmax are the minimum and maximum
possible values of k.)

L oop testing consists of attempting to create test cases
that force the numbers of iterations executed to take on
values “near” both kmin and kmax, i.€., to create test
cases that force the loop to execute typically one
iteration more and less than either the lower limit,
Kmin, or the upper limit, kmax. In the example above,
test cases should force “zero” iterations of the loop and
compare actual results to the expected behavior of the
software object (see Figure 3-5).In many cases, not all
of these choices are possible. If the minimum number
of iterationsis zero (kmin = 0), one can hardly force
Kmin—1 =1 iterations. If thereis no hard upper
bound on kmax, the casesinvolving kmax are not
possible.

71

Nested loops generally require all combinations of
these choices for each nested loop. One loop has eight
cases; two nested loops, 64; three nested loops, 512.
Beizer suggests methods to reduce this number
considerably, but such reductions should be subjected
to athorough analysis and used with great caution in
safety-related applications.

Intertwining loops such as those shown in the bottom
of Figure 3-4 require much more care and ingenuity to
test adequately. It isfar preferable to forbid the use of
these loopsiif that option exists.

3.5.4. Data Flow Testing

Dataflow testing is directed toward finding errorsin
the manipulation of data. Thisincludes all types of
data—program variables, sensor and actuator data,
database data, and file data. Databases and files can be
considered to be data, aswell asthe recordsin them.

Beizer defines four ways data can be manipulated. The
exact meaning varies among the types of data. Symbols
and meanings are shown in Table 3-1.

Data flow is analyzed by examining the way each data
element in the module is used along each path in the
control flowgraph. Sequences of the lettersd, k, and u
are used to record the ways the data is used. For
example, consider data element x in the example of
Figure 3-2. The variable x is manipulated in some way
in each of the nodes 2, 4, 5, 7 and 9. In Figure 3-6, the
usage of variable x is shown on the outlink of each
node in which x is used in some way. Consider the
usage of data element x on path 1-2-3-4-6-7-8-9-11 in
Figure 3-6. The progression of usages of variable x on
this path is represented by the string ‘ududuu.” Note
that if x isalocal variable, an anomaly isindicated by
thefirst ‘ud’ in that x is used before the first definition.
Thisis shown in the second line of the example
programin Fig. 3-2.

Appendix B

Nested Loops

<§< *

Intermingled Loops

Figure 3-4. Examples of Loopsin Flowgraphs

Legitimate Number of Iterations
Expected During Execution

Kmin Kmax

-1 +1 +2 -1 +1

Number of Iterations Attempted in Testing

Figure 3-5. Test Casesin Loop Testing

72

Appendix B

Table 3-1. Data Flow Testing Symbols and M eanings

c Computation
use
calculation.

p Predicate use

u Used

Symbol M eaning Definition
d Defined A program variableis defined when it isinitialized in a declaration
statement or is given avalue in an assignment statement. A fileis
defined by being opened. A record is defined by being read.
k Killed A local variable iskilled in block-structured programming languages

when the containing procedureis exited. A fileiskilled whenitis
closed. A record in afileiskilled when it isdeleted. A recordina
memory buffer is killed when the buffer is cleared.

A program variableis used in acomputation if it appears on the right-
hand side of an assignment statement or as part of a pointer

A program variableis used in apredicate if it appears in the predicate
portion of an IF, CASE, or WHILE statement.

A variableis can be described as “used” if it isused in a computation
(c) or in apredicate (p).

Analysis of data flow consists of examining the
possible ways in which data may be used.
Consideration is given to anomal ous situations related
to single usages of dataitems or to pairs of usages of a
dataitem. Notation for single data item usages is of the
form: -d, -u, -k, d-, u-, or k-, where the ‘-’ means that
nothing of interest regarding the data item is occurring
on the path before or after the indicated usage type.
Pairs of usages of adataitem are indicated by atwo-
character string such as du or dk.

Fifteen combinations of single or paired usage are
possible, and can be classified as follows:23

* Thefollowing combinations are considered
normal: —d (the first definition on the path), k—, du,
kd, ud, uk, and uu.

» Thefollowing combinations are suspicious, and
should be investigated to be sure the usage is
intended and is correct: —k, —u, d—, u—, dd, dk,
and kk.

* Thefollowing combination is always afault: ku.

Data flow testing requires the creation of test cases that
cover these potential manipulations of data (i.e., that
test the various calculations and variable usages). They
are based on the modul€’ s control flowgraph, and
should be considered as tests added to branch and loop
tests. A number of such tests suites have been
described in the literature, but are generally insufficient

23 Recall that nG; = n!/[r!(n—)!], so it can be shown that the
following number of combinationsis possible: 5C1 + 5Co=5+10=
15 ways.

73

for safety-critical software. The recommended form is
called the ‘all-uses strategy, and can be stated very
simply:

“There must be at |east one test case for at
least one path from every definition of every
variable to every use of that definition.”

Starting from the test cases already defined for branch
and loop testing, consider the variables manipulated by
the module one at atime. For each variable x, find all
definitions of x and all uses (‘c’ or ‘p’) of x. For each
definition, locate al ‘c’ and ‘p’ uses of that definition.
For each such use, find a path on the control flowgraph
from that definition to the use which does not include
new definitions or kills. In many cases, an existing test
case will be sufficient, since branch test cases and
previous data flow test cases are likely to include the
new data flow case.

In Figure 3-6, for variable ‘x,” definitions occur in
nodes 2, 4, and 5. The definitionin node 2 isused in
both nodes 4 and 5, while each of the definitionsin
nodes 4 and 5 are used in nodes 7 and 9. The latter two
paths are included in the former, so only two paths are
required here to cover all definitions/usage pairs: 1-2-
3-4-6-7-8-9-11 and 1-2-3-5-6-7-8-9-11. In most cases,
of course, many more paths would be required,
including some which were not included in the control
flow paths.

Appendix B

u

oV
oo o O G202 0
og

DENE

Figure 3-6. Control Flowgraph Augmented to Show Data Flow

74

Appendix B

4. FUNCTIONAL TESTING

4.1. Purpose of Functional Testing

Functional testing (also known as “black box™ testing)
consists of testing the functions to be performed by a
software element as defined in requirements, design
specifications and user documentation. It is focused on
comparing actual and specified behavior, independent
of the structural characteristics of the software. The
primary concerns are functional and timing
requirements. Programs, subsystems and systems are
tested in large part with functional tests, however,
functional tests also apply to packages and modules.
Although, structural testing and static analyses are the
dominant testing strategies for at these levels, the
design specifications for packages and modules should
contain information on which to base functional tests.
Thisis particularly true for software elements such as
communications packages, device drivers, and
mathematical subroutines. For COTS software,
functional testing islikely to be applied to programs,
subsystems and systems, and will normally be carried
out by or on behalf of the customer. The qualities
addressed by functional testing, summarized in Table
1-2, are discussed below.

4.2. Benefitsand Limitations of Functional
Testing

Both the benefits and limitations of functional testing
are aresult of the fact that the execution of functionsis
examined rather than the internal structure of the
software object. The focusis on verifying that
requirements and user needs have been met. Functional
testing can be applied at any level but is usually
associated with programs, subsystems, and systems.

4.2.1. Benefits

Since the focusis not on internal software structure, it
iseasier for functional testing to be performed by
independent parties. Test cases may originate with the
customer, user, or regulator. For COTS software, test
cases might also originate from information gathered
from the experience of other users of the item. Finally,
functional testing techniques do not require the
availabhility of source code, which, for COTS software,
may not be available.

Functional testing techniques can address awide range
of software qualities. Test cases for functional testing
techniques address technical correctness by allowing
verification of the accuracy and precision of results as
well as verification of the consistency, interoperability,
and performance of the software item. Consistency and

75

interoperability are addressed by examining the
interactions among modules as transactions are
processed. Performance is addressed viatest cases
focused on timing requirements for real-world
transactions. Regarding the correctness of a software
item in the sense of its being complete, acceptable, and
valid, test cases can focus on missing or partially
implemented transactions, improper handling of real-
world conditions and states, and incorrect
representations of user needs and the real-world
environment. Functional test cases can also be
designed to test security and integrity mechanisms,
user interfaces, and robustness in the presence of
invalid inputs.

4.2.2. Limitations

Functional testing usually does not detect
undocumented features or functions such as
development aids |eft in the software. Since testers
have no visihility into internals, functional subtleties
may be overlooked, particularly if structural testing has
not been performed.

4.3. Information Required to Perform
Functional Testing

Functional testing requires a software requirements
specification, user instructions, detailed knowledge of
external interfaces (to sensors, actuators, operators, and
other software), and the software object being tested.

A test station is recommended for testing by customers.
This includes the ability to select pre-defined test
cases, apply the test cases to the software object, and
evaluate the results of the test against pre-defined
criteria. The ability to reproduce functional testing will
generally be necessary, and atest station is the most
effective tool to accomplish this.

4.4. Methods of Performing Functional
Testing

The functional testing must be planned, designed,
created, executed, evaluated, and documented.

4.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for functional testing.

1. Determine the software qualities that are being
evaluated. For safety-related COTS software, the
primary quality of interest is correctness. In a
technical sense, this encompasses accuracy,

Appendix B

precision, consistency, interoperability, and
performance. From a product perspective,
correctness includes acceptability, completeness,
and validity. Other qualities that can be addressed
are integrity, security, robustness, usability, and
user friendliness.

2. Determine which functional testing techniques
will be required. Transaction testing and domain
testing are minimal requirements. Additional
techniques should be employed if the goal of the
technique is applicable to the software object.

3. Determine what resources will be required in order
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test
station, and test data.

4. Determine the criteriato be used to decide how
much testing will be required. Thisis a stopping
criterion—how much testing is enough?

5. Determine which software objects will be tested.
4.4.2. Test Design and Test | mplementation

The following actions are required to design and
implement functional testing.

1. Create procedures for executing the functional test
Ccases.

2. Createindividual test cases. Each test case should
contain the following information:

a Testidentification. Each test case must have a
unique identifier.

b. Purpose. Each test case should have a specific
reason for existing. Examples include
verifying that a particular timing constraint
can be met, that a particular function is
performed correctly, or checking for a
specific type of failure. For the latter, see
headings 1 and 2 of the Bug Taxonomy in the
Annex.

c. Input data. The precise data required in order
to initiate the test must be specified.

d. Initial state. In order to reproduce atest case,
theinitial state of the software object (before
the test begins) may need to be specified. This
information is not necessary if the object is
intended to execute correctly and identically
inall initial states. For example, atransaction
processing program should correctly handle
any transaction no matter what has gone
before.

e. Test results. The expected results of the test
must be known and specified. These are the

76

values of data objects external to the software
object under test (such as actuator values,
display screen values, and database values).

f. Final state. In some cases, the fina state of
the object must be specified as part of the test
case information.

3. Createthetest station. Thisisamechanism for
selecting, executing, evaluating, and recording the
results of tests carried out on the object. Test
station components, illustrated in Figure 4-1,
include:

a. Test case selection. A means of selecting test
cases to be executed. Test case information is
typically kept in afile or database, and the
selection may simply consist of “get next test
case.”

b. Test program. A means of setting the object’s
initial state (if necessary), providing input to
the object, recording the output from the
object, and (if necessary) recording the final
state of the object.

c. Testoracle. A means of determining the
correctness of the actual test output and object
State.

d. Resultsdatabase. A means of recording the
test results for future analysis and evaluation.
Typical datainclude the test identifier, date,
version of object being tested, test output and
state, and an indication of correctness or
failure of the test.

4.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the results
analyzed. If discrepancies between actual and expected
results occur, there are two possibilities: either the test
case has afault or the object has afault. In the first
case, the test case should be corrected and the entire
test procedure rerun.

If the object has afault and the development
organization is performing the test, the programmer is
expected to correct the fault. The pattern of test—fix—
test—fix continues until al discrepancies have been
resolved.

In the case of COTS software, obtaining corrections
may be very difficult. Suppose the test is being
performed by (or on behalf of) the customer. If the
software was devel oped for the customer under
contract, there may be considerable leverage for
obtaining corrections. If the software is a consumer
product (for example, alibrary accompanying a

Appendix B

(Software Object) Test Case Input - Test Output
Requirements Selection Program
Software
Object
Test Case Test Case
Generator Database Test
- Oracle >
Correctness
Results
Database

Figure4-1. Typical Test Station Componentsfor Functional Testing

compiler used for development), experience shows that
many developers have little interest in expensive

repairs that satisfy alimited marketplace. In this case,
the options of the customer may be simply to reject the
software or to evaluate each fault detected by the
testing and determine its effects on safety. If more than
one fault exists, the cumulative effect of all the faults
on safety must also be determined.

The nature of the faults encountered must also be
considered. The discovered faults might be related to
new requirements arising from the specific, intended
application of the COTS product. They might also be
minor faults that might reasonably have escaped
detection during product development. In these cases,
the significance of the faults should be evaluated and
the options for obtaining corrections might be pursued.
However, if one or more serious faults pertaining to the
product itself are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

4.5. Discussion of Functional Testing

There are anumber of techniques for developing
functional tests. A summary of several of these is given
below and is based largely on Beizer (1990); see that
reference and Howden (1987) for detailed information.

4.5.1. Transaction Testing

A transaction is a complete unit of work as seen by the
operators of the computer system. An exampleis
changing the value of a set point. The operator
normally views this as a simple action—entering a
value on adisplay screen causes the value to change,
resulting in a change to some other portion of the
screen. In fact, many processes may be invoked on
multiple computers to carry out the action, but none of
the details are of interest to the operator.

Transaction testing is similar to control flow testing
(Section 3.4.2) inthat it is based on aflowgraph. It
differs from control flow testing in that the flowsin
transaction testing are derived from the requirements
specification, while the flows in control flow testing
are derived from the program internal structure.
Transaction testing is carried out at the program,
subsystem, or system level instead of the module level.
Nodes on the flowgraph represent processes that act on
the transaction, while the links on the graph represent
the movement of transaction data from one processto
another. Note that a transaction flowgraph does not
necessarily match program control flow. An exampleis
shown in Figure 4-2.

Appendix B

Entry for . Accept Rpt Validate
E t —— - —— -
Report xecutive Parameters Parameters
Run

Report \

Executive Executive Exit

Report

Queue /
Report

Figure 4-2. Example of a Transaction Flowgraph

Transactions typically are born (created) as aresult of
some triggering action, exist for some period of time,
and then die. Each transaction can be modeled by a
transaction flowgraph, and there is a separate graph for
each transaction. Some computer systemsinvolve
hundreds of transactions, resulting in alarge supply of
graphs. Alternative flows on the graph may exist to
handle errors and peculiar conditions. Transactions
may “spawn” additional transactions, and multiple
transactions may collapse into asingle one. The
resulting flow can be quite complex.

Transaction testing assumes that the processing within
each node of the flowgraph is correct, but that there
may be errorsin routing transactions from one node to
another. A test must be created for every path from
transaction birth to transaction death. Particular
attention must be devoted to paths caused by errors,
anomalous data or timing, or other strange events.

4.5.2. Domain Testing

A program can frequently be viewed as a function
transforming input values to output values. Programs
generally operate on more than one input variable, and
each adds a dimension to the input space. The
collection of all input variables determines a vector,
known as the input vector. An example might be

(temperature, pressure, neutron flux, on/off switch,
valve position)

where the first three are assumed to be read from
sensors and the last two read from an operator console.
Domain testing divides the input vector valuesinto
sets, called domains, where the program behaves the
same for all valuesin the set.

78

An example of a specification for a control function
based on a single variable, temperature, might take the
following form (the errors are deliberately included for
illustrative purposes):

if temp<0

if 0 <temp <50

if 50 < temp < 80
if 75 <temp < 150

error
turn on heater
turn off both heater and cooler

turn on cooler (thisis assumed
to be a specification error, i.e.,
assume the requirements call
for shutdown at 120)

emergency shutdown (thisis
assumed to be a specification
error, i.e., assumethe
requirements call for shutdown
at 120)

if 150 <temp

In this example (illustrated in Figure 4-3), there are
five domains, with boundaries at 0, 50, 80, and 120.
The boundaries are typically points in the input space
at which anew rule applies. The calculations are
assumed to be correct for all values in each set, and
faults are sought at or near the boundaries of the
domain. Several errors are shown in the example:

e Itisnot known how the program should respond
for temp = 0 and temp = 150.

e There areinconsistent requirements for 75 < temp
< 80 since the domains overlap.

¢ The problem statement requires (it is assumed
here) emergency shutdown at 120, not 150.

Appendix B

Temperature

|
0 50

--—) Domain 1: Error

Turn on cooler

75 80

) Domain 2: Turn on heater
)

Domain 4: €

120 150

Domain 3: Turn off heater
& cooler

Emergency shutdown

)
]

Domain 5: fF—#

Figure 4-3. Example of Domains

Domains can be drawn and analyzed manually for one
or two variables. Real-time control system software
generally requires more than two sensors and operator
signals, so the application of domain testing can be
impractical unless automated tools can be found.24

Test cases for domain testing are concentrated at or
very near the boundaries of each domain. Figure 4-4
shows hypothetical two-dimensional input spaces,
where the shaded areas represent anticipated input
values. The asterisks show afew of the possible test
input values. If test cases are based on code
implementation rather than specifications, domain
testing is considered to be a structural technique.

Howden (1981) points out that techniques for
examining classes of input data can aso be applied to
the examination of classes of output data. In cases
where classes of output data are related to classes of
input data, selecting input data to produce output at the
boundaries of the output classes can yield useful
results. In addition, it is also useful to consider invalid
output data and to attempt to generate this output with
selected inputs. This approach is closely related to the
use of fault tree analysis.

45.3. Syntax Testing

The syntax of external inputs, such as operator or
sensor inputs, and internal inputs, such as data crossing
interfaces between subsystems, must be validated. In
addition to the well-documented input syntax that may
be described in the requirements and design

24 A reviewer pointed out that he was unaware of the use of domain
testing in real-time systems.

79

specifications, it is also necessary to examine the
software object for implicit, undeclared languages.
These may be found in areas such as user and operator
command sets, decision logic relating to transaction
flows, and communications protocols. Sources for this
information include requirements and design
documentation, manuals, help screens, and devel oper
interviews. Items relating to hidden languages should
be included on code inspection checklists (see Section
2). For defined or hidden languages, the syntax must be
defined with atool such as BNF and a set of syntax
graphs must be created on which to base test cases for
various syntactic constructions. Figure 4-5 shows a
trivial example of a syntax graph. A sentence would be
formed based on the syntax graph by following a path
indicated by the arrows, making legitimate
substitutions when rectangles are encountered, and
inserting literally the contents of the circles. Thus,
PAUSE; and PAUSE{ 5} ; would be legitimate
constructions.

Testing consists of supplying acombination of valid
and invalid constructions as inputs. Types of faults
discovered with syntax testing relate to cases where
valid constructions are not accepted, invalid
constructions are accepted, or where the handling
mechanisms for valid or invalid inputs break down.
Beizer (1990) notes that the invalid constructions lead
to the biggest payoffsin this type of testing. Fairly
simple syntax rules can lead to very large numbers of
possible test cases, so automated means must be used
to accomplish the testing.

Appendix B

Figure 4-4. Examples of Two-Dimensional Domains with Examples of Test Values

Identifier

Expression

Figure 4-5. Example of a Syntax Graph

4.5.4. Logic-Based Testing

Some applications or implementations must deal with
situations in which the values of a number of
conditions must be evaluated and appropriate actions
taken depending on the particular mix of condition
values. If these situations are derived from system
requirements, they are functional issues; if they are the

result of the design approach, they are structural issues.

Functional |ogic-based testing consists of testing the
software system’s logic for handling these mixes of
conditions. In addition to the correctness of the logic,
software quality factors of completeness and internal
consistency are also addressed.

Decision tables can be an effective means for
designing test cases to examine software logic. This
logic might be explicitly documented using techniques
such as decision tables or decision trees, or might be
implicit in the software requirements or design
specifications. In the latter case, the sources for
obtaining information are the same as for syntax
testing. The cause—effect graphing technique can be
applied to transform this information into decision

80

table format; an example is provided in Pressman
(1987).

An example of alimited entry (conditions and actions
are binary valued) decision tableis shown in Figure 4-
6. A detailed discussion of decision tables can be found
in Hurley (1983). A rule consists of the actionsto be
followed when the specified conditions hold. Note that
the rule corresponding to conditions (Y,Y,Y) is
missing, possibly corresponding to an impossible
physical situation. The dash in rule 4 means that the
value of condition 3isimmaterial for thisrule (i.e,
rule 4 represents two cases, N,Y,Y and N,Y,N).

Testing based on this decision table should begin with
averifying the completeness and consistency of the
table (see Hurley, 1983). Then test cases should be
developed to ensure that the software performs the
correct actions for the specified rules. It should be
verified, by attempting to design atest case, that a
(Y,Y,Y) situation is indeed impossible, and both
options for rule 4 should be tested to ensure that the
same action is taken.

Appendix B

RULES

=
N

Condition 1
Condition 2
Condition 3

Z <<
<z <

Z2Z2<| »
<zl *®
<zZzzZ| 9
zzz| ©

Action 1
Action 2
Action 3
Action 4

X

X X X

Figure 4-6. Example of a Decision Table

The use of adecision table model for designing testsis
appropriate when the following requirements hold
(Beizer 1990):

* The specification consists of, or isamenable to, a
decision table.

* Theorder of condition evaluation does not affect
rule interpretation or resulting actions.

* Theorder of rule evaluation does not affect
resulting actions.

* Oncearuleissatisfied, no other rule need be
considered.

* If multiple actions can result from agiven rule, the
order in which the actions are executed does not
matter.

45.5. State Testing

Testing based on state-transition modelsis effectivein
examining a number of areas including communication
protocols, failure and recovery sequences, and
concurrent processing. Figure 4-7 illustrates a state
transition diagram with three states indicated by boxes
and three transitions indicated by arrows. The trigger
for the state change (input or event) is shown in the top
part of the transition label and the action or output
associated with the transition is shown in the bottom
part of the label. (Note that state-transition models can
be depicted with other notation, such as state tables.)
For each input to a state, there must be exactly one
transition specified; if the state doesn’t change, a
transition is shown to and from the same state.

81

Faults can be associated with an incorrect structure for
a state-transition model or with a structurally correct
model that does not accurately represent the modeled
phenomena. In the former category, faults can be
related to conditions such as states that cannot be
reached or exited or the failure to specify exactly one
transition for each input. These types of faults can be
detected from a structural analysis of the model. In the
latter category, faults can be related to conditions such
as states missing from the model, errorsin the
specification of triggering events, or incorrect
transitions. Detection of these errorsinvolvesthe
analysis of, or testing against, specifications. Missing
states can arise from incorrect devel oper assumptions
about possible system states or real world events.
Errorsin modeling triggering events or associated
outputs can easily arise from ambiguities contained in
system or software requirements. For embedded COTS
software, states of the software itself or states related to
the interface of the software to the larger system may
need to be modeled as a basis for analysis and testing.

To perform state testing, it is first necessary to develop
correct state-transition diagrams for the phenomena
being investigated. An analysis should be made to
verify that the state-transition model is consistent with
the design and that the model to be used is structurally
correct. Design errors might be indicated by this
analysis. Following this analysis, a set of test cases
should be developed that, as a minimum, coversall
nodes and links of the diagrams. Test cases should
specify input sequences, transitions and next states, and
output sequences.

Appendix B

Temp > 150
Alert

Temp > 200
Shutdown

System OK |——®

System Hot |——® System Off

?

Temp <150
Clear Alert

Figure4-7. Example of a State Transition Diagram

State testing is recommended in the following
situations (see Beizer 1990):

Where an output is based on the occurrence of
seguences of events

Where protocols are involved
Where device drivers are used

Where transactions can stay in the system
indefinitely

82

Where system resource utilization is of interest

Where functions have been implemented with
state-transition tables

Where system behavior is dependent upon stored
State.

Appendix B

5. STATISTICAL TESTING

5.1. Purpose of Statistical Testing

Statistical testing is conducted to measure the
reliability of a software object or to predict its
probability of failure, rather than to discover software
faults. It consists of randomly choosing a sample of
input values for the software object and then
determining the correctness of the outputs generated
from those inputs. Obtaining a statistically valid
reliability measure using thistesting strategy requires
that the following assumptions hold:

1. Thetest runs are independent.

2. For eachinput, the chance of failure is constant.
That is, the probability of failure isindependent of
the order in which samples are presented to the
software object, and of the number of samples that
precede the specific input.

3. Thenumber of test runsislarge.
4. All failures during testing are detected.

5. Thedistribution of the inputs under real operating
conditionsis known.

The qualities addressed by statistical testing are
availability and reliability.

It is possible to use statistical testing for the goal of
finding failures (random testing). That is, one runs
randomly selected tests in the hopes of finding failures.
Thisislikely to be less efficient than the other, more
directed, forms of testing. Of course, if failures do
happen during statistical testing, the faults should be
found and corrected. See Hamlet (1994) for a
discussion of random testing.

5.2. Benefitsand Limitations of Statistical
Testing

5.2.1. Ben€fits

Statistical testing does not rely on any knowledge of
the internal composition of the software abject, so it
can be carried out whether or not such knowledge
exists. It isthe only way to provide assurance that a
specified reliability level has been achieved. Statistical
testing (as discussed here) isless prone to human bias
errors than other forms of testing. It isa practical
method in many cases when moderate-to-high
reliability (in the range of 104 to 10°° failures per
demand) is required.

83

Statistical testing addresses the reliability quality by
estimating probabilities based on large numbers of
tests. Reliability information also provides information
regarding potential availability, although it does not
address external factors, such as system loads or
administrative procedures, that may affect accessibility
when a particular capability is needed.

5.2.2. Limitations

A number of practical issues with statistical testing
limit its usefulness in some instances. The first set of
issues relates to the test planning and test station (see
below). The most difficult of these issues are
frequently the construction and verification of the test
oracle. Determining the operational profile may be
nearly as difficult.

The second set of issuesinvolves the length of time
necessary for testing. Testing to the level of reliability
required for atypical safety-critical process control
system should be feasible, but testing to much higher
levels of reliability is not. (See the discussion of
expected test duration in section 5.4.2.)

The third set of issues concerns the relationship
between safety and reliability. Statistical testing
provides areliability number, not a safety number.
Since inputs with safety implications should be avery
small percentage of al possible inputs, it isnot likely
that random testing will include many safety-critical
input cases. In such cases, it may be possible to carry
out two series of tests: one based on all possible input
cases, and one based only on safety-critical input cases.
Thiswould result in two numbers—an overall
reliability figure and a safety-related reliability figure.
The latter could be reasonably termed a safety
reliability number. This approach does, however,
require that the set of safety-critical input events be
completely understood so that the safety-critical input
space can be completely and accurately characterized.
This may be difficult to accomplish.

5.3. Information Required to Perform
Statistical Testing

Statistical testing requires no knowledge of the internal
composition or structure of the software object being
tested. It does require a good understanding of the
statistical distribution of inputs which can be expected
to appear during actual operating conditions (the
operational profile). A test platform is required, which
includes the ability to generate random tests using the
operational profile, the ability to carry out each test on
the software object, and the ability to evaluate the

Appendix B

results for correctness. Since many thousands of tests
arerequired in order to obtain avalid reliability
number, the test platform must be automated.

5.4. Methods of Performing Statistical
Testing

The statistical test must be planned, designed,
implemented, executed, evaluated, and documented.
The following steps (or their equivalent) must be
carried out.

5.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for statistical testing. Statistical testing
focuses on thereliability quality of software. For
safety-related COTS software, the goal of statistical
testing is to provide a measure of the item’ s reliability
given its anticipated operational profile (i.e., given the
specific role that the COTS item will play in the safety-
related system). The software qualities of interest for
statistical testing are reliability and availability.

1. Determinethe level of reliability to be achieved.
Thisis generally given in terms of the maximum
acceptable failure rate—for example, that the
failure rate cannot exceed 107 per demand.

2. Determineif failures will be tolerated. A statistical
test will be carried out for some period of time,
recording all failures. At some point, the number
of failures may be so large that the test will be
stopped and the software object rejected. If the test
isto be statistically valid, this point must be
determined during test planning. For reactor
protection systems, the objective should beto
carry out the test without failure. In this case, any
failure will cause the test to stop, the fault to be
corrected, and the test to be completely rerun.
When a statistical test isre-run, it iscrucia that
the random numbers sel ected be independent of
seguences previously used.

3. Determine the degree of statistical confidence
which will be required in the test results. Thiswill
be given as a percentage—for example, .99.

4. Determine what resources will be required in order
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test
station, and test data.

5. Determine which software objects will be tested.
5.4.2. Test Design and Test Implementation

The following actions are required to design and
implement statistical testing.

1. Calculatethe number of test cases which must be
carried out without failureto achieve the specified
reliability with the specified confidence level.

The number of test cases, N, is given by the following
formula, where f isthefailure rate and C isthe
confidence level (Poore, Mills, and Mutchler 1993):

n= og(l-c) U
Hog(1-)

Table 5-1 shows approximate values of N for various
vauesof C and f.Inthistable, ‘M’ stands for

‘million.” Thistable shows that increasing the required
level of confidence in the test results can be obtained
with relatively little extra effort. However increasing
the required level of reliability (decreasing the failure
rate) that must be demonstrated requires considerably
more test cases to be executed and consequently
increases test time.

Given arequired number of test cases and an
assumption about the average number of test cases that
can be carried out per unit time, estimates can be made
of the total time that will be required for test execution.
Table 5-2 shows the approximate amount of execution
time required to achieve specified failure rates at the
.99 confidence level under two assumptions of the rate
of testing: one test per second and one test per minute.
In the first case, testing isimpractical for failure rates
under 10°7; in the latter, under 10°5. Note that this table
assumes that tests are carried out 24 hours per day,
seven days per week, and that no failures are
encountered during the test. Determining the expected
amount of calendar (elapsed) time for the test will be
longer if the assumptions are not valid. The times
given in the table are examples; if test cases require
more (or less) time, then the table can be adjusted. For
example, if atest case requires five minutesto execute,
then nearly six years will be required for afailure rate
of 10>

Appendix B

Table5-1. Required Number of Test Casesto Achieve
Stated Levels of Failure Rate and Confidence

f c=.9 c=.99 c=.999
101 22 44 66
102 230 460 690
10°3 2,300 4,600 6,900
104 23,000 46,000 69,000
10 230,000 460,000 690,000
106 2,300,000 4,600,000 6,900,000
1077 23M 46M 69M
108 230M 460M 690M
109 2,300M 4,600M 6,900M
10°10 23,000M 46,000M 69,000M
1011 || 230,000M 460,000M 690,000M

Table5-2. Expected Test Duration asa Function of Test Case Duration

Failure rate Number of test cases 1 test per second 1 test per minute
101 44 44 seconds 45 minutes
102 459 7.5 minutes 7.6 hours
103 4600 1.25 hours 3days
104 46,000 13 hours 1 month
10 460,000 5.5 days 11 months
106 4,600,000 1.75 months 9years
107 46M 1.5 years 90 years
108 460M 15 years 900 years
109 4,600M 150 years 9,000 years

1010 46,000M 1,500 years 90,000 years
1011 460,000M 15,000 years 900,000 years

2. Obtain the operational profile.

An operational profileisastatistical distribution
function which gives, for every point p in the input
space, the probability that p will be selected at any
arbitrary point in time. More formally, suppose the
inputs presented to the software object during actual
operation arev1, v2, ..., V. Then the operational
profile gives, for each point p, the probability that vk =
p for eachk, 1< k < n(Musa1992)25,

25 Some additional statistical assumptions discussed in the reference
arenot listed here.

85

For example, suppose that a software object has only
three input values: low, medium, and high. An analysis
of the expected frequency of these three values shows
that ‘low’ will occur 70% of the time; ‘medium,” 20%;
and ‘high,” 10%. Thisis an operational profile for this
example.

3. Determinethetest oracle.

Thisisafunction which, given an input to the software
object under test and the results of running the test, will
determine whether the actual test result obtained is
correct. The test oracle must be able to make this
determination with very high confidence.

Appendix B

4. Createthetest station.

A test station is a mechanism for creating, executing,
evaluating, and recording tests performed on the
software object and the results of the tests. It must be
able to run with minimal supervision for very long
periods of time. Typical test station components are
shown in Figure 5-1.

A brief description of each component of atest station
follows:

a. Input Generator. A means of generating input test
cases in such away that the probability
distribution function of the test casesis equivalent
to the probability distribution function determined
by the operational profile.

b. Test Program. A means by which the software
object can be executed using the generated test
cases as input to produce test results as output. As
ageneral rule, the object must be placed in the
sameinitial state before each test is carried out.

c. Test Oracle. A means of determining the
correctness of the output produced by the software
object under test.

Input Input
Generator

d. Test Database. A means of recording the test
input, test output, and correctness for future
analysis and evaluation.

5.4.3. Test Execution and Test Evaluation

The following actions are required to execute and
evaluate statistical testing.

1. Executethetests. Carry out the test procedure until
the predetermined number of test cases have been
executed without failure. The number of test cases
which will be required can be determined from
Table 5-1.

2. Assessthetests. Evaluate the results to be sure that
the test was successfully executed, and provide
assurance of this fact. This may require aformal
certification.

5.5. Discussion of Statistical Testing

Statistical testing is the primary way to calculate a
failure rate for a software object. When the conditions
discussed above can be met, statistical testing can be
very effective. It can be used for nearly any type of
software object.

Output
Test P

Program

Software
Object

Test
Oracle

Correctness

Results
Database

Figure5-1. Typical Test Station Componentsfor Statistical Testing

For example, supposeit is necessary to provide a
reliability number for a square root routine. It would be
reasonable to assume that the operational profile
function is the uniform distribution function, so that all
random numbers are equally likely to be used.
Generating a sequence of random numbers for this
distribution is easy, so the input generator issimply a
random-number generator. The test program merely
callsthe sguare root routine. The oracleis simple—
check for a positive number, square the answer and
compare to the input number using previously
established error bounds. It should be possible to carry
out one test every millisecond or so, depending on the
speed of the computer being used. If thegoal isa
failure rate of 108 with .99 confidence, Table 5-1
shows that about 460,000,000 test cases will be
required—this will take about 5.3 days.

Statistical testing will be much more difficult for a
software system such as areactor protection system.
Here, the input points may consist of a series of values
from simulated sensors which occur over a period of
several minutes—and the timing may be critical. This
would mean that carrying out a sequence of tests will
require a considerable amount of time. Assuming one
test per minute (on average), attaining afailure rate of
104 at .99 confidence will require about a month of
testing. Thisis estimated as follows:

1. Table5-1 states that approximately 46,000 test
cases are required to achieve afailure rate of 104
at .99 confidence level.

2. Theassumption of one test case executing per
minute (on average) means that sixty test cases can
be executed in an hour. Assuming that the tests are
automated and run continuously 24 hours a day,
seven days aweek, it follows that 10,080 test
cases can be executed in a calendar week.

87

Appendix B

3. Hence, it will require (46,000)/(10,080) or
approximately 4.5 calendar weeks to execute the
required test cases to establish this statistical
failure rate at the specified confidence level.

Similarly, it can be shown that attaining afailure rate
of 10-° will require nearly ayear of testing.

An accurate operational profile may be difficult to
obtain. One possible approach is to partition the input
space into subsets of inputs that occur in different
modes of operation, and test each of these individually,
assuming a uniform distribution function. For example,
one mode of operation could be “all operating
parameters well within bounds;” another could be
“some operating parameter is near alimit,” and so on.
If these operational modes can, in turn, be specified
accurately, statistical testing can be carried out for each
mode. (See Whittaker 1994 for an aternative

approach.)

There are some advantages to this approach. Itis
presumably more important to know the reliability of
the software under off-normal and emergency
conditions than under normal operating conditions.
One might be willing to test for 104 failure rate under
normal conditions, but require 10> under near-
emergency and emergency conditions. If the latter
input space is sufficiently small, increased confidence
in the software could be obtained at reasonable cost.

However, constructing the test oracle and guaranteeing
its correctness becomes a serious problem. It is not
possible to carry out large numbers of tests and
evaluate the results using human labor because of the
time constraints and human error rates for this type of
task.

Appendix B

88

Appendix B

6. STRESSTESTING

6.1. Purposeof Stress Testing

Stress testing is a process of subjecting a system to
abnormal 1oads on resourcesin order to discover
whether the system can function outside anticipated
normal ranges, to determine the usage limits beyond
which the system will fail as aresult of the overloaded
resource, and to gain information that will help to
characterize the behavior of asystem whenitis
operating near its usage limits. The process of
discovering “breaking points’ also provides the
opportunity to examine recovery mechanisms and
procedures.

If asystem can function adequately with loads outside
the anticipated real-life application domain levels, the
assumption isthat it will perform properly with normal
loads (Perry 1988). Background testing (testing in the
presence of loads within normal ranges) should be
performed to help validate this assumption. A
background test verifies that the system will perform
adequately within the normal mix of loads and
resources and provides the basis with which to
compare stress test results.

Stress testing is particularly important for COTS
software items since those items may not have been
developed with the particular safety-related application
in mind. This type of testing provides an opportunity to
examine the COTS software performance with respect
to the intended application.

The qualities addressed by stress testing, summarized
in Table 1-2, are discussed below.

6.2. Benefitsand Limitations of Stress
Testing

6.2.1. Benefits

Stress testing forces a system to operate in unusual
circumstances not typically created in other forms of
testing and, therefore, is complementary to other
elements of the overall testing effort. It is particularly
important for safety-related software sinceitisa
testing strategy that creates high-stress, off-normal
scenariosin which the software islikely to fail. For
reactor protection systems, these scenarios might be
related to sensor input streams of interrupt-type or
buffer loading signals or to output streams generated in
emergency situations. Stress testing uncovers
information about software faults and provides an
understanding of limits on system resources. The latter
isuseful in validating the intended use of the COTS

89

item, in establishing system monitoring routines, and in
tuning the system for installed operations.

Stress testing provides information about robustness
and performance by creating scenarios in which normal
operating ranges are exceeded and examining how
performance degrades. Stresstesting at the boundaries
of these ranges also alows one to confirm that
performance requirements have been met. The actual
failures encountered in stress testing may lead to the
discovery of software faults and provide opportunities
to examine the compl eteness of the recovery
mechanisms incorporated into the software.

6.2.2. Limitations

Stress testing must be performed in an actual or
simulated installed environment and requires complete
information about operating and user procedures.
Stress testing can be expensive because of manpower
costs or because of the need to develop automated
elements of the test station. In addition, specific
internal states can be difficult to reproduce, and root
causes of failures can be difficult to find.

6.3. Information Required to Perform
Stress Testing

Stress testing must be performed in an actual or
simulated production (installed) environment.
Therefore, complete information about this
environment must be available, including an
understanding of operating and user procedures. Since
stress testing must provide abnormal 1oads, there must
be a definition of the types of loads to be placed on the
system as well as an understanding of what the normal
operating ranges will be for each load. Typical load
types of interest are as follows (the first four being of
particular interest for reactor protection systems):

e Highvolumes and arrival rates of transactions

e Saturation of communications and processor
capacities

e Situations stressing internal table sizes

e Situations stressing internal sequencing or
scheduling operations

e Heavy use of disk storage space and swapping
capability

e Operating with avery large database size

e Many simultaneous users.

Appendix B

Finally, if available, design informationisvauablein
order to understand how to design specific stresstests
that will focus on internals.

6.4. Methods of Performing Stress Testing

The stress tests must be planned, designed, created,
coordinated, executed, evaluated, and documented.

6.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for stress testing.

1. Determine the software qualities to be addressed
with stress testing. The primary quality of interest
for safety-related COTS software is robustnessin
the intended role; however, availability,
completeness, correctness, and performance are
also addressed.

2. Determine the load situations under which the
software system isto be tested. For safety-related
COTS software, these will be determined based on
knowledge of the role that the COTS product will
play in the system and vendor-supplied
information regarding product functions and
performance. Information derived from the usage
experience of other users of the COTS software
item or from fault tree analyses of the system is
also valuablein this process.

3. Determine whether the stress testing environment
will be an actual or simulated production
environment.

4. Determine the resources required to carry out the
testing. Resources include budget, schedule,
personnel, equipment, test toals, test station, and
test data.

5. Determine the criteria to be used to decide how
much testing will be required. Thisis astopping
criterion—how much testing is enough? For
example, “stress testing of a particular software
resource might continue until adequate
information has been gathered regarding all three
goals of stress testing.”

6.4.2. Test Design and Test Implementation

The following actions are required to design and
implement stress testing.

1. Establish thetesting environment for the stress
tests.

In most cases, a simulated production environment will
be required. Since the results of stress testing will
reflect the performance of the software in the test
environment rather than the real-life environment, the

90

simulated production environment should be as close
as possible to the actual production environment.

2. Createproceduresfor executing the stresstests.

Since this testing will take place in an actual or
simulated production environment, the test procedures
should make use of system operating procedures and
usage procedures or user guides. The stress test
procedures specify how the system loads will be
generated, the roles of all participants, the sequences of
operations (scripts) each participant will perform, the
test cases to be performed, and how the test results will
be logged.

3. Createindividual test cases.

Each test case should contain the following
information:

a Test identification. Each test case must have a
unique identifier.

b. Purpose. Each test case should have a specific
reason for existing. Examples include verifying
the proper operation of a system function,
verifying response times, and verifying the
handling of exception conditions during situations
of high system loads.

c. Input data. The precise data required in order to
initiate the test case must be specified.

d. Initial state. Theinitia state for thetest caseis
essentially specified in the test procedures and
scripts; however, there may be initial state
information specific to agiven test case.

e. Testresults. The expected results of the test must
be known and specified. Expected performance
statistics, counts of operations, etc., should be
determined from the planned load and test case
input data.

f. Final state. In some cases, thefina stateis
important and must be specified as part of the test
case information.

4. Createthetest station.

The test station is a mechanism for specifying and
generating loads as well as selecting, executing,
evaluating, and recording the results of other tests
carried out on the software. Note that, depending on
the goal of aparticular stress (or background) test,
input may consist solely of transactions in the input
load or may be augmented by test cases from other
types of testing. Test station components (patterned
after Beizer 1984) areillustrated in Figure 6-1 and
include:

Appendix B

Loading Input Load Input - Output
Specifications Generation 4
&
A : Software
' Object
Load
Data Test Case
Selection

y

Test
Load Data Load Oracle [
Generator Scenarios
Correctness
Test Case v
Database

—® Data
p=| LoOgger

Results
Database

Figure6-1. Typical Test Station Components

Load data generator. A means of accepting
specifications for the loading of resources and
generating scenarios needed for the input load
generator to produce the required load during the
stress test run.

Test case selection. A means of selecting, if
appropriate, additional test cases to be executed.
Test case information istypically kept in afile or
database, and the selection may simply consist of
“get next test case.”

Input load generation. A means of accepting input
data for loading and generating the desired system
loads with the desired statistical characteristics.

Test Oracle. A means of determining the
correctness of the output (of the optional test
cases) produced by the software object under test.

91

e. DatalLogger. A means of logging pertinent
information about system performance during the
stress test.

f. Test evaluation. A means of analyzing the results
of the stress test, including specific test case
results as well as scanning software system output
for anomalies created during the stress test.

g. Resultsdatabase. A means of recording the test
results for future analysis and evaluation.

6.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the test
results must be analyzed. The logged system outputs,
produced in response to the input load or any
additional test cases, must be examined to verify
correct operation of the system. Thisis done by
comparing inputs and outputs relating to specific test
cases or transactions to determine if information was

Appendix B

lost or improperly processed. In addition, the logged
output must be analyzed to determineif timing,
seguencing, counts, error recovery, etc. match what
was input to the system by the load generator and test
case selector. If appropriate, database integrity
checking routines should be run. If a particular load
causes the system to fail, the logged information is
used to search for the circumstances of the failure and
to quantify the load level at which the failure occurred.
These evaluations can be quite difficult to perform
since they can require the careful examination of
voluminous data.

The results of stresstesting may indicate that the
system performs acceptably within the planned load
ranges of the tested resources. In this case, the stress
testing results provide operating information about
resource limits that can then be embedded into system
monitoring routines or used for system tuning
purposes.

The performance profile and the nature of faults
encountered must also be considered. The performance
information must be verified against the requirements
and congtraints of the system in which the COTS
software will operate. The significance of the faults
discovered should be evaluated and, if appropriate, the
options for obtaining corrections might be pursued. If
the performance of the software is not within the
requirements of the application or if one or more
serious faults are discovered, confidence decreases
rapidly regarding the suitability of the product for use
in a safety-related application.

6.5. Discussion of Stress Testing

Stress testing is a process of subjecting a system to
abnormal loads with the intention of breaking the
system. By investigating why the system breaks and at
what load level the system breaks, information is
gained about possible software faults, operating |oad
limits, system behavior near the load limits, and error
recovery behavior. Typical software faults discovered
are faults associated with sequencing, contention for
resources, scheduling priorities, error or time-out
recovery paths, and simultaneous activities. These
faults tend to be subtle and frequently indicate design
problems rather than simple coding mistakes (Beizer
1984).

For COTS software, there are a number of approaches
to identifying specific load situationsto test. Therole
of COTS software in the overall system must be
characterized with respect to functions provided,
performance requirements, and interfaces to other
elements of the system—essentially a black-box
characterization. Additional information can be added
based on any available vendor data regarding product
specification and target performance levels. If source
code is available, the source code inspection process

92

(see Section 2) could have, as one of its goals, afocus
on identifying structural properties that should be stress
tested. Information can also be gathered from other
users of the COTS software item regarding usage
experience and load ranges. This information might
suggest suspect areas or provide additional confidence
that some areas are robust. Finaly, if fault tree analysis
techniques are applied to the overall system, any root
causes possibly relating to the COTS software role
must be examined to see if load-related failures might
be possible.

With respect to the task of diagnosing software faults
based on stress test results, it should be noted that the
exact reproduction of internal states resulting from
stress test scenarios is difficult, if not impossible. This
is because the simultaneous activities of test
participants and the various internal timing and
scheduling situations are usually not exactly

repeatable. Therefore, the process of identifying
software faults based on stress test resultsis not as
deterministic asit isfor other types of test results
analysis. However, if the goal isto examine genera
behavior at various load levels, the stored scenarios can
be re-run as needed. Discovered software failures that
are reproducible without active system loads can be
further investigated with other test techniques. It is
more difficult to diagnose software failures that occur
only under high system loads or that cannot be
reproduced in subsequent stress tests. For this reason, it
isimportant to have full knowledge of test inputs and
to log as much information as possible during the stress
test execution for subsequent analysis. For COTS
software items, knowledge of the experience of other
users and a characterization of their normal operating
loads is useful ancillary information for analysis of test
results.

Creating mechanisms for generating the required loads,
logging test data, and analyzing resultsis a difficult
task. For small systemswith minimal real-time
requirements or in cases in which only general
information such as user responsetimeisdesired, it is
possible to do the data generation manually and to
create the system load viainteractive user inputs
augmented by other system functions such as running
reports and performing intense data searches. Data
logging would be done manually or automatically
using existing logging features, and test results analysis
would be manual. Even though there might not be a
need for devel oping automated load generatorsin these
cases, there will still be a significant effort to use and
coordinate manpower and system resources for stress
testing.

For most situations, it is necessary to develop
automated means for generating the input loads,
logging data, and analyzing results. See Beizer 1984
for a detailed discussion of load generation techniques.

The load generation process comprises two parts,
which can be combined or separated depending on the
demands of the stress testing operations. First, the
information characterizing a particular load is used to
generate typical test data according to statistical
distributions of desired input parameters. Second, an
automated means for using this data to generate loads

93

Appendix B

in real time during the test must be created. Logging
facilities might already exist in the system platform; if
not, they have to be created. Finally, the analysis of
results will require specialized routines to organize and
summarize the data, scan the results for possible
anomalies, and compare system performance statistics
with those anticipated from the input load statistics.

Appendix B

94

Appendix B

7. REGRESSION TESTING

7.1. Purpose of Regression Testing

Regression testing consists of re-running a standard set
of test cases following the implementation of a set of
one or more changes to previously tested software. Its
purpose is to provide confidence that modifications
have not had unintended effects on the behavior of the
software. It is assumed that the appropriate testing
techniques (see the other sections of this report) have
been applied to test whether the modified software
elements perform as specified in the change
documentation. In addition to regression testing itself,
it is necessary to verify that all system documentation,
such as requirements, design, and operating
procedures, have been updated to reflect the software
modifications. Regression testing addresses the quality
of software correctness and, indirectly, the qualities
associated with the test strategies that are being re-

applied.

7.2. Benefitsand Limitations of Regression
Testing

7.2.1. Benefits

In addition to the direct testing of software
modifications, regression testing is required to provide
assurance that, except for the modified portion, the
software performsin the same way that it did prior to
the changes. Since the regression testing process
repeats previous testing, no additional “start-up” costs
are associated with establishing test mechanisms. In
addition, since the regression testing effort islargely
the same for each software change, there is benefit in
combining changes into one release. For COTS
software, thisis equivalent to determining when to
upgrade to a new release.

The primary software quality of interest in regression
testing is correctness since the goal is to verify that
new faults have not been inadvertently introduced into
the software. Since regression testing consists of re-
running test cases from appropriate test techniques, the
qualities associated with those techniques are also re-
examined during regression testing.

7.2.2. Limitations

There are significant maintenance costs for
configuration management of the test cases, test data,
and test procedures as well as for keeping the testing
environment(s) current. Regression testing will involve
re-running large numbers of test casesin avariety of
types of testing and will, therefore, be expensive to
perform.

95

7.3. Information Required to Perform
Regression Testing

Since regression testing is are-use of existing test
cases, 26 the information required to perform this
testing depends upon the specific types of test casesto
be re-run. Thisinformation is described in the sections
of thisreport dealing with the test types of interest. Itis
essential that configuration control be maintained on

all test documentation and related test materias to
permit regression testing to be performed effectively
and efficiently.

7.4. Methods of Performing Regression
Testing

The regression tests must be planned, designed,
coordinated, executed, evaluated, and documented.

7.4.1. Test Planning and Test Requirements

The following actions are required to plan and generate
requirements for regression testing.

1. Establish and maintain the standard set of tests
(test cases, data, and procedures) to be repeated as
regression tests. For COTS software used in a
safety-related context, it is recommended that the
full set of functional and stress testing initially
conducted be repeated.

2. Determine what resources will be required in order
to carry out the testing. Resources include budget,
schedule, personnel, equipment, test tools, test
station(s), and test data. The test tools, test
station(s), and test data should already be in place
from previous testing activity, and should be
directly usable provided that configuration
management procedures have been continuously
applied to these items.

3. Determine the criteriato be used to decide how
much testing will be required. Thisis astopping
criterion—how much testing is enough? For
example, “the regression testing process will
continue until the entire standard set of test cases
runs without incident.”

7.4.2. Test Design and Test Implementation

The following actions are required to design and
implement regression testing.

26psa system evolves, the suite of test cases used for regression
testing must also evolve.

Appendix B

1. Ensure that the testing environments used in
previous testing have been maintained and are
ready for regression testing.

2. Ensure that the modified software elements have
been tested according to the same testing plans
used on the original software.

3. Review the standard set of regression test cases,
data, and procedures to discover whether any have
been invalidated as aresult of the desired
modifications. Update the test cases and
procedures as appropriate.

7.4.3. Test Execution and Test Evaluation

The test procedures must be carried out and the test
results analyzed. Since the modified software elements
have already been tested to verify correct operation, the
regression test results should indicate that the areas of
the COT S software thought to have been unaffected by
the modifications are indeed unaffected by the

changes. The results should exactly match the results
of previous, successful tests.

7.5. Discussion of Regression Testing

The primary focus of regression testing isto provide
assurance that implemented changes do not, in some
subtle way, ripple through the system and cause
unintended effects. In addition to software function and
performance, there must be a verification that
conventions, standards, access rules, etc., were adhered
to in the change implementation. One source of
problems occurring in software maintenance is that

96

undocumented assumptions made by the devel opment
team are not carried over into the maintenance phase
(Hetzel 1984). For these reasons, it is recommended
that the full complement of functional and stress
testing activities originally performed be repeated to
test the modified safety-related software system. (It is
assumed that appropriate tests and analyses will
already have been run on the modified code.)
Depending on the role of the modified software
element and the criticality of its function (and of the
overall software system), it may be possibleto justify a
reduced set of test cases for regression testing based on
a change impact assessment and knowledge of
potential fault consequences derived from a software
risk assessment. This requires a careful assessment of
the modified software element and its interfaces
(logical and data) to other parts of the system, as well
as a complete understanding of the likelihood and
magnitudes of potential loss.

The methods used for regression testing are the same
methods used for the various types of testing carried
out previoudly. Test plans, test cases, and test
procedures, as well astest stations and automated test
support mechanisms, aready exist, and it is assumed
that they have been maintained under configuration
control for future use in regression testing. Whenever
modifications are made to the software object, it is
necessary to review the standard set of test cases (as
well astest data and test procedures) to ensure that
none have been invalidated by the modifications and to
update the set based on the specifications for the newly
modified object.

Appendix B

8. REFERENCES

Basili, Victor R. and Richard W. Selby, “ Comparing the Effectiveness of Software Testing Strategies,” |IEEE
Transactions on Software Engineering Vol. 12, No. 12 (December 1987), 1278-1296.

Beizer, Boris, Software System Testing and Quality Assurance, Van Nostrand Reinhold (1984).

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold (1990).

Charette, Robert N., Software Engineering Risk Analysis and Management, McGraw-Hill (1989).

Dyer, Michael, The Cleanroom Approach to Quality Software Devel opment, John Wiley & Sons (1992).

Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development,” I1BM Systems Journal,
Vol. 15, No. 3, 1976, 182-211.

Glass, Robert L., Building Quality Software, Prentice-Hall (1992).
Hamlet, Richard, “Random Testing,” in Encyclopedia of Software Engineering, John Wiley & Sons, 1994.
Hetzel, William, The Complete Guide to Software Testing, QED Information Sciences, Inc. (1984).

Howden, William E., “A Survey of Static Analysis Methods,” in Tutorial: Software Testing & Validation
Techniques, Institute of Electrical and Electronics Engineers, 1981.

Howden, William E., “A Survey of Dynamic Analysis Methods,” in Tutorial: Software Testing & Validation
Techniques, Institute of Electrical and Electronics Engineers, 1981.

Howden, William E., Functional Program Testing and Analysis; McGraw-Hill (1987).
Hurley, Richard B., Decision Tablesin Software Engineering, Van Nostrand Reinhold, (1983).

|IEEE 610.12. |EEE Sandard Glossary of Software Engineering Terminology, Institute of Electrical and Electronics
Engineers, 1991.

|EEE 829. |IEEE Sandard for Software Test Documentation, Institute of Electrical and Electronics Engineers, 1983.
|EEE 1008. IEEE Standard for Software Unit Testing, Institute of Electrical and Electronics Engineers, 1986.

|EEE 1074. |IEEE Standard for Developing Software Life Cycle Processes, I nstitute of Electrical and Electronics
Engineers, 1992.

Lawrence, J. Dennis, Software Reliability and Safety in Nuclear Reactor Protection Systems, NUREG/CR-6101,
Lawrence Livermore National Laboratory, Livermore, CA (1993).

Lawrence, J. Dennis and Preckshot, G. G., Design Factors for Safety-Critical Software, NUREG/CR-6294,
Lawrence Livermore National Laboratory, Livermore, CA (1994).

Marick, Brian, The Craft of Software Testing; Prentice-Hall (1995).

Miller, Edward and William E. Howden, Tutorial: Software Testing and Validation Techniques, Second Edition,
|EEE Computer Society Press (1981).

McCall, Jim A. et al., “Factors in Software Quality,” Concept and Definitions of Software Quality, General Electric
Company, 1977.

Musa, John D., “The Operationa Profilein Software Reliability Engineering: An Overview,” Third Int'l Symp. on
Soft. Rel. Eng. (October 1992), 140-154.

Olender, Kurt M. and Leon J. Osterweil, “Cecil: A Sequencing Constraint Language for Automatic Static Analysis
Generation,” |EEE Transactions on Software Engineering, Vol. 16, No. 3, March 1990, 268-280.

Perry, William E., A Structured Approach to Systems Testing, QED Information Sciences (1988).
Pressman, Roger S., Software Engineering, A Practitioner’s Approach, McGraw-Hill, (1987).
Price, Source Code Static Analysis Tools Report, Software Technology Support Center, 1992.

Poore, J. H., Harlan D. Mills, and David Mutchler, “Planning and Certifying Software System Reliability,” |IEEE
Software 10, 1 (January 1993), 88-99.

Preckshot, G. G. and Scott, J. A., Vendor Assessment and Software Plans, UCRL-1D-122243, Lawrence Livermore
National Laboratory, Livermore, CA (1995).

Whittaker, James A., and Michael G. Thomason, “A Markov chain model for statistical software testing,” |EEE
Transactions on Software Engineering, Vol. 20, No. 10 (October 1994), 812-824.

Y ourdon, Edward, Sructured Walkthroughs, Prentice-Hall (1989).

97

Appendix B

98

Appendix B

ANNEX: TAXONOMY OF SOFTWARE BUGS

This Annex” provides ataxonomy for program faults (bugs). Faults are categorized by afour-digit number, perhaps
with sub-numbers using the point system: e.g., “1234.5.6.” The“x” that appearsis a place holder for possible future
filling in of numbers as the taxonomy is expanded. For example,

3xxx—structural bugsin the implemented software

32xx—jprocessing bugs
322x—expression eval uation
3222—arithmetic expressions
3222.1—wrong operator

Ixxx: FUNCTIONAL BUGS: REQUIREMENTSAND FEATURES: Bugs having to do with requirements as
specified or asimplemented.

11xx: REQUIREMENTS INCORRECT : the requirement or apart of it isincorrect.
111x: Incorrect: requirement iswrong.
112x: Undesirable: requirement is correct as stated but it is not desirable.
113x: Not needed: requirement is not needed.

12xx: LOGIC: the requirement isillogical or unreasonable.

121x: Illogical: illogical, usually because of a self-contradiction which can be exposed by alogical analysis
of cases.

122x: Unreasonable: logical and consistent but unreasonable with respect to the environment and/or
budgetary and time constraints.

123x: Unachievable: requirement fundamentally impossible or cannot be achieved under existing
constraints.

124x: Inconsistent, incompatible: requirement is inconsistent with other requirements or with the
environment.

1242: Internal: the inconsistency is evident within the specified component.
1244: External: the inconsistency iswith external (to the component) components or the environment.

1248: Configuration sensitivity: the incompatibility is with one or more configurations (hardware,
software, operating system) in which the component is expected to work.

13xx: COMPLETENESS: the requirement as specified is either ambiguous, incomplete, or overly specified.

131x: Incomplete: the specification isincomplete; cases, features, variations or attributes are not
specified and therefore not implemented.

132x: Missing, unspecified: the entire requirement is missing.

133x: Duplicated, overlapped: specified requirement totally or partially overlaps another requirement
either already implemented or specified el sewhere.

134x: Overly generalized: requirement as specified is correct and consistent but is overly generaized
(e.g., too powerful) for the application.

137x: Not downward compatible: requirement as specified will mean that objects created or
manipulated by prior versions can either not be processed by this version or will be incorrectly
processed.

138x: Insufficiently extendible: requirement as specified cannot be expanded in waysthat are likely
to be needed—important hooks are left out of specification.

* This Annex is based on “ Bug Taxonomy and Statistics,” Appendix, Software Testing Techniques, second edition, by Boris Beizer. Copyright O
1990 by Boris Beizer. Reprinted with permission of Van Nostrand Reinhold, New Y ork.

99

Appendix B

14xx: VERIFIABILITY: specification bugs having to do with verifying that the requirement was correctly or
incorrectly implemented.
141x: Unverifiable: the requirement, if implemented, cannot be verified by any means or within
available time and budget. For example, it is possible to design a test, but the outcome of the test
cannot be verified as correct or incorrect.

142x: Untestable: it is not possible to design and/or execute tests that will verify the requirement.
Untestable is stronger than unverifiable.

15xx: PRESENTATION: bugsin the presentation or documentation of requirements. The requirements are
presumed to be correct, but the form in which they are presented is not. This can be important for test
design automation systems, which demand specific formats.

152x: Presentation, documentation: general presentation, documentation, format, media, etc.
153x: Standards: presentation violates standards for requirements.

16xx: REQUIREMENT CHANGES: requirements, whether or not correct, have been changed between the
time programming started and testing ended.

162x Features: requirement changes concerned with features.
1621: Feature added: anew feature has been added.
1632: Feature deleted: previously required feature deleted.
1633: Feature changed: significant changes to feature, other than changes in cases.
163x: Cases: cases within afeature have been changed. Feature itself is not significantly modified except
for cases.
1631: Cases added.
1632: Casesdeleted.
1633: Cases changed: processing or treatment of specific case(s) changed.
164x: Domain changes: input data domain modified: e.g., boundary changes, closure, treatment.
165x: User messages and diagnostics: changesin text, content, or conditions under which user prompts,
warning, error messages, etc. are produced.
166x: Internal interfaces: direct interfaces (e.g., via data structures) have been changed.
167x: External interfaces. externa interfaces, such as device drivers, protocols, etc. have been changed.
168x: Performance and timing: changes to performance requirements (e.g., throughput) and/or timings.

2xxx: FUNCTIONALITY ASIMPLEMENTED: requirement known or assumed to be correct, implementable,
and testable, but implement is wrong.

21xx: CORRECTNESS: having to do with the correctness of the implementation.
211x: Feature misunderstood, wrong: feature asimplemented is not correct—not as specified.

218x: Featureinteractions: featureis correctly implemented by itself, but has incorrect interactions with
other features, or specified or implied interaction is incorrectly handled.

22xx: COMPLETENESS, FEATURES: having to do with the completeness with which features are
implemented.
221x: Missing feature: an entire feature is missing.
222x: Unspecified feature: afeature not specified has been implemented.
223x: Duplicated, overlapped feature: feature asimplemented supplicates or overlaps features

implemented by other parts of the software.

23xx: COMPLETENESS, CASES: having to do with the completeness of cases within features.
231x: Missing case.
232x: Extra case: cases that should not have been handled are handled.
233x: Duplicated, overlapped case: duplicated handling of cases or partial overlap with other cases.
234x: Extraneous output data: data not required are output

24xx: DOMAINS: processing case or feature depends on a combination of input values. A domain bug existsif
the wrong processing is executed for the selected input-val ue combination.

100

Appendix B

241x: Domain misunder stood, wrong: misunderstanding of the size, shape, boundaries, or other
characteristics of the specified input domain for the feature or case. Most bugs related to handling
extreme cases are domain bugs.

242x: Boundary locations: the values or expressions that define adomain boundary are wrong: e.g.,
“X>=6" instead of “X>=3."

243x: Boundary closures: end points and boundaries of the domain are incorrectly associated with an
adjacent domain: e.g., “X>=0" instead of “X>0".

244x: Boundary inter sections: domain boundaries are defined by a relation between domain control
variables. That relation, asimplemented, isincorrect: e.g., “IF X>0 AND Y>0...” instead of “1F X>0
ORY>0...".

25xx: USER MESSAGES AND DIAGNOSTICS: user prompt or printout or the form of communication is
incorrect. Processing is assumed to be correct: e.g., false warning, failure to warn, wrong message, spelling,
formats.

26xx: EXCEPTION CONDITIONS MISHANDLED: exception conditions such asillogical, resource
problems, failure modes, which require specia handling, are not correctly handled or the wrong exception-
handling mechanisms are used.

3xxx: STUCTURAL BUGS: bugs related to the component’ s structure: i.e., the code.

31xx: CONTROL FLOW AND SEQUENCING: bugs specificaly related to the control flow of the program
or the order and extent to which things are done, as distinct from what is done.
311x: General structure: general bugs related to component structure.

3112: Unachievable path: afunctionally meaningful processing path in the code for which thereisno
combination of input values that will force the path to be executed. Do not confuse with
unreachable code. The code in question might be reached by some other path.

3114: Unreachable code: code for which there is no combination of input values that will cause that
code to be executed.

3116: Dead-end code: code segments that once entered cannot be exited, even though it was intended
that an exit be possible.

312x: Control logic and predicates: the path taken through a program is directed by control flow
predicates (e.g., Boolean expressions). This category addresses the implementation of such predicates.

3122: Duplicated logic: control logic that should appear only once isinadvertently duplicated in
whole or in part.

3124: Don't care: improper handling of cases for which what is to be done does not matter either
because the case isimpossible or because it really does not matter: e.g., incorrectly assuming that
the case isadon’t-care case, failure to do case validation, not invoking the correct exception
handler, improper logic simplification to take advantage of such cases.

3126: Illogicals: improper identification of, or processing of, illogical or impossible conditions. An
illogical is stronger than adon’t care. Illogicals usually mean that something bad has happened
and that recovery is needed. Examples of bugsinclude: illogical not really so, failure to recognize
illogical, invoking wrong handler, improper simplification of control logic to take advantage of the
case.

3128: Other control-flow predicate bugs: control-flow problems that can be directly attributed to the
incorrect formulation of a control flow predicate: e.g., “IF A>B THEN ...” instead of “IF A<B
THEN ...".

313x: Case sdlection bug: simple bugs in case selections, such asimproperly formulated case selection
expression. GOTO list, or bug in assigned GOTO.
314x: Loops and iteration: bugs having to do with the control of loops.

3141: Initial value: iteration value wrong: e.g., “FOR 13 TO 17 ..." instead of “FOR 1=8 TO 17.”

3142: Terminal value or condition: value, variable, or expression used to control loop termination is
incorrect: eg., “FOR1=1TO7...” instead of “FORI1=1TO 8.

3143: Increment value: value, variable, or expression used to control loop increment valueis
incorrect: e.g., “FOR1=1TO 7 STEP2..." instead of “FOR I =1TO 7 STEP5...".

101

Appendix B

3144: Iteration variable processing: where end points and/or increments are controlled by values
calculated within the loop’ s scope, abug in such calculations.

3148: Exception exit condition: where specified values or conditions or relations between variables
force an abnormal exit to the loop, either incorrect processing of such conditions or incorrect exit
mechanism invoked.

315x: Control initialization and/or state: bugs having to do with how the program’s control flow is
initialized and changes of state that affect the control flow: e.g., switches.

3152: Control initialization: initializing to the wrong state or failure to initialize.

3154: Control state: for state-determined control flows, incorrect transition to a new state from the
current state: e.g., input condition X reguires atransition to state B, given that the program isin
state A; instead, the transition is to state C. Most incorrect GOTOs are included in this category.

316x: Incorrect exception handling: any incorrect invocation of a control-flow exception handler not
previously categorized.
32xx: PROCESSING: bug related to processing under the assumption that the control flow is correct.

321x: Algorithmic, fundamental: inappropriate or incorrect algorithm selected, but implemented
correctly: e.g., using an incorrect approximation, using a shortcut string search algorithm that assumes
string characteristics that may not apply.

322x: Expression evaluation: bugs having to do with the way arithmetic, Boolean, string, and other
expressions are evaluated.

3222: Arithmetic: bugs related to evaluated of arithmetic expression.
3222.1: Operator: wrong arithmetic operator or function used.

3222.2: Parentheses. syntactically correct bug in placement of parentheses or other
arithmetic delimiters.
3222.3: Sign: bug in use of sign.

3224: Logical or Boolean, not controal: bug in the manipulation or evaluation of Boolean expression
that are not (directly) part of control-flow predicates. e.g., using wrong mask, AND instead of OR,
incorrect simplification of Boolean function.

3226: String manipulation: bug in string manipulation.

3226.1: Beheading: the beginning of a string is cut off when it should not have been, or
not cut off when it should have been.
3226.2: Curtailing: asfor beheading but for string end.

3226.3: Concatenation order: strings are concatenated in wrong order or concatenated
when they should not be.

3326.3.1: Append instead of precede.

3226.3.2: Precede instead of append.
3226.4: Inserting: having to do with the insertion of one string into another.
3226.5: Converting case: case conversion (upper to lower, say) isincorrect.

3226.6: Code conversion: string is converted to another code incorrectly or not
converted when it should be.
3226.7: Packing, unpacking: strings are incorrectly packed or unpacked.
3228: Symboalic, algebraic: bugsin symbolic processing of algebraic expressions.
323x: Initialization: bugsin initialization of variables, expressions, functions, etc. used in processing,
excluding initialization bugs associated with declarations and data statements and loop initialization.
324x: Cleanup: incorrect handling of cleanup of temporary data areas, registers, states, etc. associated with
processing.
325x: Precision, accuracy: insufficient or excessive precision, insufficient accuracy, and other bugs
related to number representation system used.
326x: Execution time: excessive (usually) execution time for processing component.

4xxx: DATA: bugsin the definition, structure, or use of data.

102

Appendix B

41xx: DATA DEFINITION, STRUCTURE, DECLARATION: bugsin this definition, structure, and
initialization of data: e.g., in DATA statements. This category applies whether the object is declared
statically in source code or created dynamically.
411x: Type: the data object type, as declared, isincorrect: e.g., integer instead of floating, short instead of
long, pointer instead of integer, array instead of scalar, incorrect user-defined type.

412x: Dimension: for arrays and other objects that have a dimension (e.g., arrays, records, files) by which
component objects can be indexed, a bug in the dimension, in the minimum or maximum dimensions,
or in redimensioning statements.
413x: Initial, default values: bugsin the assigned initial values of the object (e.g., in DATA statements),
selection of incorrect default values, or failure to supply a default value if needed.
414x: Duplication and aliases: bugs related to the incorrect duplication or failure to create a duplicated
object.
4142: Duplicated: duplicated definition of an object where allowed by the syntax.
4144: Aliases: object is known by one or more aliases but specified aliasisincorrect: object not
aliased when it should have been.
415x: Scope: the scope, partition, or components to which the object appliesisincorrectly specified.
4152; Local should be global: alocally defined object (e.g., within the scope of a specific component)
should have been specified more globally (e.g., in COMMON)
4154:; Global should belocal: the scope of an object istoo global: it should have been declared more
locally.
4156:; Global/local inconsistency or conflict: asyntactically acceptable conflict between alocal
and/or global declaration of an object (e.g., incorrect COMMON).
416x: Static/dynamic resources. related to the declaration of static and dynamically allocated resources.
4162; Should be static resource: resource is defined as adynamically allocated object but should
have been static (e.g., permanent).
4164: Should be dynamic resour ce: resource is defined as static but should have been declared as
dynamic.
4166: Insufficient resour ces, space: number of specified resourcesisinsufficient or thereis
insufficient space (e.g., main memory, cache, registers, disc) to hold the declared resources.

4168:; Data overlay bug: data objects are to be overlaid but there is a bug in the specification of the
overlay areas.

42xx: DATA ACCESS AND HANDLING: having to do with access and manipulation of data objectsthat are
presumed to be correctly defined.
421x: Type: bugs having to do with the object type.
4212: Wrong type: object type isincorrect for required processing: e.g., multiplying two strings.
4314:; Typetransformation: object undergoes incorrect type transformation: e.g., integer to floating,
pointer to integer, specified type transformation is not alowed, required type transformation not
done. Note: type transformation bugs can exist in any language, whether or not it is strongly typed,
whether or not there are user-defined types.

4216: Scaling, units; scaling or units (semantic) associated with objectsisincorrect, incorrectly
transformed or not transformed: e.g., FOOT-POUNDS to STONE-FURLONGS.

422x: Dimension: for dynamically variable dimensions of a dimensioned object, a bug in the dimension:
e.g., dynamic redimension of arrays, exceeding maximum file length, removing one or more than the
minimum number of records.

423x: Value: having to do with the value of data objects or parts thereof.

4232: Initialization: initialization or default value of object isincorrect. Not to be confused with
initialization and default bugs in declarations. Thisis a dynamic initialization bug.

4234: Constant value: incorrect constant value for an object: e.g., aconstant in an expression.
424x: Duplication and aliases: bugsin dynamic (run time) duplication and aliasing of objects.

4242: Object already exists: Attempt to create an object that already exists.

4244: No such object: attempted reference to an object that does not exist.

103

Appendix B

426x: Resour ces. having to do with dynamically allocated resources and resource pools, in whatever
memory mediathey exist: main, cache, disc, bulk RAM. Included are queue blocks, control blocks,
buffer blocks, heaps, files.
4262: No such resour ce: reference resource does not exist.
4264: Wrong resour ce type: wrong resource type reference.

428x: Access. having to do with access of objects as distinct from the manipulation of objects. In this
context, accesses include read, write, modify, and (in some instances) create and destroy.

4281: Wrong object accessed: incorrect object accessed: e.g., “X:=ABC33" instead of “X:=ABD33".

4282: Accessrightsviolation: access rights are controlled by attributes associated with the caller and
the object. For example, some callers can only read the object, others can read and modify.
Violations of object access rights are included in this category whether or not aformal access
rights mechanism exits: that is, access rights could be specified by programming conventions
rather than by software.

4283: Data-flow anomaly: data-flow anomalies involve the sequence of accesses to an object: e.g.,
reading or initializing an object before it has been created, or creating and than not using.

4284: Interlock bug: where objects are in simultaneous use by more than one caller, interlocks and
synchronization mechanisms may be used to ensure that all data are current and changed by only
one caller at atime. These are not bugs in the interlock or synchronization mechanism but in the
use of that mechanism.

4285: Saving or protecting bug: application requires that the object be saved or otherwise protected
in different program states or, alternatively, not protected. These bugs are related to the incorrect
usage of such protection mechanisms or procedures.

4286: Restoration bug: application requires that a previously saved object be restored prior to
processing: e.g., POP the stack, restore registers after interrupt. This category includes bugsin the
incorrect restoration of data objects and not bugs in the implementation of the restoration of data
objects and not bugs in the implementation of the restoration mechanism.

4287: Access mode, direct/indirect: object is accessed by wrong means: e.g., direct access of an
object for which indirect accessis required: call by value instead of name, or vice versa: indexed
instead of sequential, or vice versa.

4288: Object boundary or structure: access to object is partly correct, but the object structure and its
boundaries are handled incorrectly: e.g., fetching 8 characters of a string instead of 7, mishandling
word boundaries, getting too much or too little of an object.

5xxx: IMPLEMENTATION: bugs having to do with the implementation of the software. Some of these, such as
standards and documentation, may not affect the actual workings of the software. They are included in the bug
taxonomy because of their impact on maintenance.

51xx: CODING AND TYPOGRAPHICAL: bugsthat can be clearly attributed to simple coding, as well as

typographical bugs. Classification of abug into this category is subjective. If a programmer believed that

the correct variable, say, was“ABCD” instead of “ABCE”", than it would be classified as a 4281 bug

(wrong object accessed). Conversely, if E was changed to D because of atypewriting bug, then it belongs

here.

511x: Coding wild card, typographical: all bugs that can be reasonably attributed to typing and other
typographical bugs.

512x: Instruction, construct misunder stood: all bugs that can be reasonably attributed to a
misunderstanding of an instruction’s operation or HOL statement’ s action.

52xx: STANDARDS VIOLATION: bugs having to do with violating or misunderstanding the applicable
programming standards and conventions. The software is assumed to work properly.

521x: Structure violations: violations concerning control-flow structure, organization of the software, etc.

5212: Control flow: violations of control-flow structure conventions:. e.g., excessive IF-THEN-EL SE
nesting, not using CASE statements where required, not following dictated processing order,
jumping into or out of loops, jumping into or out of decisions.

5214: Complexity: violation of maximum (usually) or minimum (rare) complexity guidelines as
measured by some specified complexity metric: e.g., too many lines of code in module, cyclomatic
complexity greater than 200, excessive Halstead length, too many tokens.

104

Appendix B

5215: Call nesting depth: violations of component (e.g., subroutine, subprogram, function) maximum
nesting depth, or insufficient depth where dictated.

5216: Modularity and partition: Modularity and partition rules not followed: e.g., minimum and
maximum size, object scope, functionally dictated partitions.

5217: Call nesting depth: violations of component (e.g., subroutine, subprogram, function) maximum
nesting depth, or insufficient depth where dictated.

522x: Data definition, declarations. the form and/or location of data object declaration is not according to
standards.

523x: Data access. violations of conventions governing how data objects of different kinds are to be
accessed, wrong kind of object used: e.g., not using field-access macros, direct access instead of
indirect, absolute reference instead of symbolic, access viaregister, etc.

524x: Calling and invoking: bugsin the manner in which other processing components are called,
invoked, or communicated with: e.g., a direct subroutine call that should be indirect, violation of call
and return sequence conventions.

526x: Mnemonics, label conventions: violations of the rules by which names are assigned to objects: e.g.,
program labels, subroutine and program names, data object names, file names.

527x: Format: violations of conventions governing the overall format and appearance of the source code:
indentation rules, pagination, headers, ID block, special markers.

528x: Comments: violations of conventions governing the use, placement, density, and format of
comments. The content of comments is covered by 53xx, documentation.

53xx: DOCUMENTATION: bugsin the documentation associated with the code or the content of comments
contained in the code.

531x: Incorrect: documentation statement iswrong.

532x: Inconsistent: documentation statement is inconsistent with itself or with other statements.
533x: Incomprehensible: documentation cannot be understood by a qualified reader.

534x: Incomplete: documentation is correct but important facts are missing.

535x: Missing: major parts of documentation are missing.

6xxx: INTEGRATION: bugs having to do with the integration of, and interfaces between, components. The
components themselves are assumed to be correct.

61xx: INTERNAL INTERFACES: bugs related to the interfaces between communicating components with
the program under test. The components are assumed to have passed their component level tests. In this
context, direct or indirect transfer of data or control information viaa memory object such as tables,
dynamically allocated resources, or files, constitute an internal interface.

611x: Component invocation: bugs having to do with how software components are invoked. In this
sense, a*“component” can be a subroutine, function, macro, program, program segment, or any other
sensible processing component. Note the use of “invoke” rather than “call” because there may be no
actual call as such: e.g., atask order placed on a processing queue is an invocation in our sense, though
(typicaly) not acall.

6111: No such component: invoked component does not exist.
6112: Wrong component: incorrect component invoked.

612x: Interface parameter, invocation: having to do with the parameter of the invocation, their number,
order, type, location, values, etc.

6121: Wrong parameter: parameter of the invocation are incorrectly specified.
6122: Parameter type: incorrect invocation parameter type used.
6124: Parameter structure: structural details of parameter type used.
6125: Parameter value: value (numerical, Boolean, string) of the parameter iswrong.
6126: Parameter sequence: parameters of the invocation sequence in the wrong order, too many
parameters, too few parameters.
613x: Component invocation return: having to do with the interpretation of parameters provided by the
invoked component on return to the invoking component or on release of control to some other
component. In this context, a record, a subroutine return sequence, or afile can qualify for this

105

Appendix B

category of bug. Note that the bugs included here are not bugs in the component that created the return
data but in the receiving component’ s subsequent manipulation and interpretation of that data.
6131: Parameter identity: wrong return parameter accessed.
6132: Parameter type: wrong return parameter type used: that is, the component using the return data
interprets a return parameter incorrectly asto type.

6134: Parameter structure: return parameter structure misinterpreted.
6136: Return sequence: sequence assumed for return parameter is incorrect.

614x: Initialization, state: invoked component not initialized or initialized to the wrong state or with
incorrect data.

615x: Invocation in wrong place: the place or state in the invoking component at which the invoked
component was invoked is wrong.

616x: Duplicate or spuriousinvocation: component should not have been invoked or has been invoked
more often than necessary.

62xx: EXTERNAL INTERFACESAND TIMING: having to do with external interfaces, such as I/O devices
and/or drivers, or other software not operating under the same control structure. Data passage by files or
messages qualify for this bug category.
621x: Interrupts: bugs related to incorrect interrupt handling or setting up for interrupts: e.g., wrong
handler invoked, failure to block or unblock interrupts.
622x: Devicesand drivers:. incorrect interface with devices or device drivers or incorrect interpretation of
return status data.
6222: Device, driver, initialization or state: incorrect initialization of device or driver, failureto
initialize, setting device to the wrong state.
6224: Device, driver, command bug: bug in the command issued to adevice or driver.
6226: Device, driver, return/status misinter pretation: return status data from device or driver
misinterpreted or ignored.
623x: 1/0 timing or throughput: bugs having to do with timing and data rates for external devices such
as. not meeting specified timing requirements (too long or too short), forcing too much throughput, not
accepting incoming data rates.

7xxx: SYSTEM AND SOFTWARE ARCHITECTURE: bugs that are not attributable to a component or to the
interface between components but affect the entire software system or stem from architectural errorsin the
system.

71xx: OSbug: bugsrelated to the use of operating system facilities. Not to be confused with bugsin the
operating system itself.
711x: Invocation, command: erroneous command given to operating system or OS facility incorrectly
invoked.
712x: Return data, status misinter pretation: data returned from operating system or status information
ignored or misinterpreted.
714x: Space: required memory (cache, disc, RAM) resource not available or requested in the wrong way.

72xx: Softwar e ar chitecture; architecture problems not elsewhere defined.
721x: Interlocks and semaphores: bugs in the use of interlock mechanisms and interprocess
communication facilities. Not to be confused with bugs in these mechanisms themselves: e.g., failure
to lock, failure to unlock, failure to set or reset semaphore, duplicate locking.

722x: Priority: bugs related to task priority: e.g., priority too low or too high, priority selected not allowed,
priority conflicts.

723x: Transaction-flow control: where the path taken by atransaction through the system is controlled by
animplicit or explicit transaction flow-control mechanism, these are bugs related to the definition of
such flows. Note that all components and their interfaces could be correct but this kind of bug could
still exist.

724x: Resour ce management and control: bugs related to the management of dynamically allocated
shared resource objects: e.g., not returning a buffer block after use, not getting an object, failure to
clean up an object after use, getting wrong kind of object, returning object to wrong pool.

106

Appendix B

725x: Recursive calls: bugsin the use of recursive invocation of software components or incorrect
recursive invocation.

726x: Reentrance: bugs related to reentrance of program components: e.g., a reentrant component that
should not be, areentrant call that should be nonreentrant.

73xx: RECOVERY ACCOUNTABILITY: bugsrelated to the recovery of objects after the failure and to the
accountability for objects despite failures.

74xx: PERFORMANCE: bugsrelated to the throughput-delay behavior of software under the assumption that

all other aspects are correct.

741x: Throughput inadequate.

742x: Responsetime, delay: response time to incoming events too long at specified load or too short
(rare), delay between outgoing events too long or too short.

743x: Insufficient users: maximum specified number of simultaneous users or task cannot be
accommodated at specified transaction delays.

748x: Performance parasites: any bug whose primary or only symptom is a performance degradation:

e.g., the harmless but needless repetition of operations, fetching and returning more dynamic resources
than needed.

75xx: INCORRECT DIAGNOSTIC, EXCEPTION: diagnostic or error message incorrect or misleading.
Exception handler invoked is wrong.

76xx: PARTITIONS AND OVERLAYS: memory or virtual memory isincorrectly partitioned, overlay to
wrong area, overlay or partition conflicts.

77xx: SYSGEN OR ENVIRONMENT: wrong operating system version, incorrect system generation, or other
host environment problem.

8xxx: TEST DEFINTION OR EXCUTION BUGS: bugsin the definition, design, execution of tests or the data
used in tests. These are asimportant as “real” bugs.

81xx: DESIGN BUGS: bugsin the design of tests.

811x: Requirements misunder stood: test and component are mismatched because test designer did not
understand requirements.

812x: Incorrect outcome predicted: predicted outcome of test does not match required or actual outcome.

813x: Incorrect path predicted: outcome is correct but was achieved by the wrong predicted path. The
test isonly coincidentally correct.

814x: Test initialization: specified initial conditions for test are wrong.

815x: Test data structure or value: data objects used in tests or their values are wrong.

816x: Sequencing bug: the sequence in which tests are to be executed, relative to other tests or to test
initialization, iswrong.

817x: Configuration: the hardware and/or software configuration and/or environment specified for the test
iswrong.

818x: Verification method criteria: the method by which the outcome will be verified isincorrect or
impossible.

82xx: EXECUTION BUGS: bugs in the execution of tests as contrasted with bugs in their design.

821x: Initialization: tested component not initialized to the right state or values.

822x: Keystroke or command: simple keystroke or button hit error.

823x: Database: database used to support the test was wrong.

824x: Configuration: configuration and/or environment specified for the test was not used during the run.

828x: Verification act: the act of verifying the outcome was incorrectly executed.

83xx: TEST DOCUMENTATION: documentation of test case or verification criteriaisincorrect or
misleading.

84xx: TEST CASE COMPLETENESS: cases required to achieve specified coverage criteria are missing.

107

Appendix B

108

Appendix B

GLOSSARY

Definitions for many of the technical terms used in the report are given below. An abbreviated indication of the
reference from which the definition was taken is provided in square brackets.

610 |EEE 610-12
882C MIL-STD-882C
1028 |EEE 1028
1058 |EEE 1058
1074 |EEE 1074

RADC RADC 1977

Acceptability—A measure of how closely the computer program meets the true needs of the user [RADC].
Accessibility—the extent that software facilitates the selective use of its components [RADC].

Augmentability—the extent that software easily accommodates expansions in data storage requirements or
component computational functions [RADC].

Accountability—the extent that code usage can be measured [RADC].

Accuracy—(1) A qualitative assessment of correctness, or freedom from error [610]. (2) A quantitative measure of
the magnitude of error [610]. (3) A measure of the quality of freedom from error, degree of exactness possessed
by an approximation or measurement [RADC].

Activity—(1) A group of related tasks [|EEE 1074]. (2) A major unit of work to be completed in achieving the
objectives of a software project. An activity has precise starting and ending dates, incorporates a set of tasksto
be completed, consumes resources and results in work products [1058].

Adaptability—The ease with which a system or component can be modified for use in applications or environments
other than those for which it was specifically designed [610].

Availability—(1) The degree to which a system or component is operational and accessible when required for use
[610]. (2) The fraction of total time during which the system can support critical functions [RADC]. (3) The
probability that a system is operating satisfactorily at any point in time, when used under stated conditions
[RADC].

Clarity—(1) The ease with which the program (and its documentation) can be understood by humans [RADC]. (2)

The extent to which a document contains enough information for a reader to determine its objectives,
assumptions, constraints, inputs, outputs, components, and status [RADC].

Completeness—(1) The attributes of software that provide full implementation of the functions required [RADC].
(2) The extent to which software fulfills overall mission satisfaction [RADC]. (3) The extent that all of the
software’ s parts are present and each of its parts are fully developed [RADC].

Consistency—The degree of uniformity, standardization, and freedom from contradiction among the documents or
parts of a system or component [610].

Convertibility—The degree of success anticipated in readying people, machines, and procedures to support the
system [RADC].

Cost—Includes not only development cost, but also the costs of maintenance, training, documentation, etc., on the
entire life cycle of the program [RADC].

Correctness—(1) The degree to which a system or component is free from faultsin its specification, design and
implementation [610]. (2) The degree to which software, documentation, or other items meet specified
requirements [610]. (3) The degree to which software, documentation or other items meet user needs and
expectations, whether specified or not [610].

Extendibility—The ease with which a system or component can be modified to increase its storage or functional
capacity [610].

109

Appendix B

Generality—a measure of the scope of the functions that a program performs [RADC].
Inexpensiveness—see Cost.

Integrity—(1) The degree to which a system or component prevents unauthorized access to, or modification of,
computer programs or data [610]. (2) A measure of the degree of protection the computer program offers
against unauthorized access and loss due to controllable events [RADC]. (3) The ability of software to prevent
purposeful or accidental damage to the data or software [RADC].

Interface—(1) A shared boundary across which information is passed [610]. (2) A hardware or software component
that connects two or more components for the purpose of passing information from one to the other [610].

Interoperability—how quickly and easily one software system can be coupled to another [RADC].

Maintai nability—(1) The ease with which a software system or component can be modified to correct faults,
improve performance or other attributes, or adapt to a changed environment [610]. (2) The probability that a
failed system will be restored to operable conditions within a specified time [RADC].

Manageability—the degree to which a system lends itself to efficient administration of its components [RADC].

Modifiability—(1) A measure of the cost of changing or extending a program [RADC]. (2) The extent to which a
program facilitates the incorporation of changes, once the nature of the desired change has been determined
[RADC].

Modularity—(1) The degree to which a system or computer program is composed of discrete components such that a
change to one component has minimal impact on other components [610]. (2) The ability to combine arbitrary
program modules into larger modules without knowledge of the construction of the modules [RADC]. (3) A
formal way of dividing a program into a number of sub-units each having awell defined function and
relationship to the rest of the program [RADC].

Non-complexity—see Simplicity.

Performance—(1) The degree to which a system or component accomplishes its designated functions within given
constraints, such as speed, accuracy, or memory usage [610]. (2) The effectiveness with which resources of the
host system are utilized toward meeting the objective of the software system [RADC].

Portability—The ease with which a system or component can be transferred from one hardware or software
environment to another [610].

Precision—(1) The degree of exactness or discrimination with which a quantity is stated [610]. (2) The degreeto
which calculated results reflect theoretical values [RADC].

Reliability—(1) The ability of a system or component to perform its required functions under stated conditions for a
specified period of time [610]. (2) The probability that a software system will operate without failure for at least
agiven period of time when used under stated conditions [RADC]. (3) The probability that a software fault does
not occur during a specified time interval (or specified number of software operational cycles) which causes
deviation from required output by more than specified tolerances, in a specific environment [RADC].

Reparahility—The probability that afailed system will be restored to operable condition within a specified active
repair time when maintenance is done under specified conditions [RADC].

Requirement—(1) A condition or capability needed by a user to solve a problem or achieve an objective [610]. (2) A
condition or capability that must be met or possessed by a system or system component to satisfy a contract,
standard, specification or other formally imposed documents [610].

Reusability—The degree to which a software module or other work product can be used in more than one computer
program or software system [610].

Review—An evaluation of software elements or project status to ascertain discrepancies from planned results and to
recommend improvement [1028].

Robustness—(1) The degree to which a system or component can function correctly in the presence of invalid inputs
or stressful environmental conditions [610]. (2) The quality of a program that determinesits ability to continue
to perform despite some violation of the assumptionsin its specification [RADC].

Safety—Freedom from those conditions that can cause death, injury, occupational illness or damage to or loss of
equipment or property, or damage to the environment [882C].

Security—(1) A measure of the probability that one system user can accidentally or intentionally reference or
destroy datathat isthe property of another user or interfere with the operation of the system [RADC]. (2) The
extent to which access to software, data and facilities can be controlled [RADC].

110

Appendix B

Self-Descriptiveness—The degree to which a system or component contains enough information to explain its
objectives and properties [610].

Serviceability—The degree of ease or difficulty with which a system can be repaired [RADC].

Simplicity—The degree to which a system or component has a desigh and implementation that is straightforward
and easy to understand [610].

Software products—(1) The complete set of computer programs, procedures and possibly associated documentation
and data designated for delivery to auser [610]. (2) Any of theindividual itemsin (1) [610].

Structuredness—(1) The ability to combine arbitrary program modules into larger modules without knowledge of
the construction of the modules [RADC]. (2) The extent to which a system possesses a definite pattern of
organization of its independent parts [RADC]. (3) A formal way of dividing a program into a number of sub-
units each having awell defined function and relationship to the rest of the program [RADC].

Task—The smallest unit of work subject to management accountability. A task is awell-defined work assignment
for one or more project members. [1074]

Testability—(1) The degree to which arequirement is stated in terms that permit establishment of test criteria and
performance of tests to determine whether those criteria have been met [610]. (2) The degree to which a system
or component facilitates the establishment of test criteria and the performance of tests to determine whether
those criteria have been met [610].

Understandability—(1) The extent to which the purpose of the product is clear to the evaluator [RADC]. (2) The
ease with which an implementation can be understood [RADC].

Uniformity—a module should be usable uniformly [RADC].

Usability—(1) The ease with which a user can learn to operate, prepare inputs for, and interpret outputs of a system
or component [610]. (2) The ease of operation from the human viewpoint, covering both human engineering and
ease of transition from current operation [RADC].

User Friendliness—the degree of ease of use of a computer system, device, program, or document. See User
Friendly in [610].

Validation—The process of evaluating a system or component during or at the end of the development processto
determine whether it satisfies specified requirements [610].

Validity—The degree to which software implements the user’ s specifications [RADC].

Verification—The process of evaluating a system or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase [610].

Verification and Validation—The process of determining whether the requirements for a system or component are
complete and correct, the products of each development phase fulfill the requirements or conditions imposed by
the previous phase, and the final system or component complies with specified requirements [610].

111

